积分几何相关论文
本学位论文属于Orlicz Brunn-Minkowski理论,致力于仿射极值问题和等周型不等式的研究,涉及John椭球体、极小表面积、均质积分和仿......
不等式一直是数学研究中非常活跃而有吸引力的研究领域.其中几何不等式有着其独有的理论特征和魅力,例如经典的等周不等式至今仍而......
在积分几何中,运动公式是一些定义在定区域与动区域交集上的几何函数的积分公式。这些公式能够被看作是各种交集测度的积分公式,它们......
本文参照Toth教授引进的平均Minkowski对称度,引进一类新的凸体仿射几何不变量—对偶平均Minkowski对称度,并研究了这类对称度的一些......
本文以凸体和星体为研究对象,主要涉及如下几个方面的内容: 1.定长线段在斜柱体内的运动测度与超平行体基本区域的格型Buffon-Ren......
学位
本文利用积分几何的知识对Buffon投针问题作了推广.给出了广义支撑函数和限弦函数的定义,并利用它们将凸域内定长线段的运动测度m(l......
学位
回顾积分几何的发展历史,凸几何一直以来都是其研究的一个重要领域.凸体具有很多优美的性质,对它们的研究能够使我们发现和认识到其几......
学位
积分几何(Integral Geometry)起源于著名的Buffon投针问题,也称为几何概率(Geometric Probability),其实质就是通过各种积分来考察图......
积分几何(Integral Geometry)起源于著名的Buffon投针问题,也称为几何概率(Geometry probability),其实质就是通过各种积分来考察......
文中将三维欧氏空间中的Fary不等式,改进推广到高维欧氏空间中的二维闭曲面....

