矩阵空间相关论文
矩阵代数是代数学中一个重要研究领域,它在许多方面都有应用.“线性保持问题”(LPPs)在近几十年来已成为矩阵代数中一个十分活跃的......
本文刻画了从Sn(F)到Mm(F)上和从Sn(F)到Sm(F)上的保矩阵逆的线性映射.又刻画了从Mn(C)到Mm(C)上和从Sn(C)到Mm(C)上的保矩阵k次幂......
刻画矩阵集之间保持不变量的映射结构问题被称为保持问题.近几十年来,保持问题已成为国际矩阵论研究中一个十分活跃的领域.这一方......
设Mn是复数域C上n×n(n≥2)矩阵构成的复线性空间,Hn是复数域C上,n×n自共轭矩阵构成的实线性空间,ω(A)表示A∈Mn的数值半径,则(Mn,ω(......
随着用户对无线多媒体业务需求的不断增长,无线通信技术和网络也正在经历着一个前所未有的快速发展时期,支持多媒体业务、提高频谱......
矩阵空间的保持问题是矩阵论中一个重要的研究领域,它有较好的理论价值及实际意义,且取得了许多优秀的成果.设F是任意域,n为整数且n≥......
矩阵代数是代数学的一个重要研究领域,它在计算机、图论、经济、工程、控制等许多方面都有应用,保持问题是矩阵代数中一个重要的研究......
近几十年,线性保持问题(LPP)是矩阵论研究中一个十分活跃的领域.这一方面是由于它的理论价值;另一方面,是由于它在微分方程、系统......
矩阵的保持问题不但有很好的理论价值和实际意义,更在系统控制,数理统计和微分方程等领域有着十分广泛的实际应用背景.因此在矩阵理......
线性保持问题是矩阵论研究领域中一个重要的课题,刻画矩阵集之间保持某些函数、子集、关系、变换等不变量的线性算子的问题被称为......
本文对复矩阵空间上保持k-幂等的算子进行了研究。设C是复数域,n是任意的正整数,记Mn和Sn分别是C上的n×n全矩阵空间和n×n对称矩阵......
本文对上三角矩阵空间的M-P逆的保持问题进行了探讨。近年来研究各种不变量以及不变量的保持映射和变换历来是数学领域关注的问题,......
在矩阵论中一个比较活跃的研究课题就是矩阵空间的保持问题,刻画矩阵空间之间保不变量的映射的结构问题称为矩阵空间的保持问题,广义......
线性保持问题是矩阵理论及应用中的一个重要研究领域,它在微分方程,系统控制等领域有着广泛的应用,近几十年来取得了丰硕的成果.矩阵......
刻画矩阵集之间保持某些函数、子集、关系、变换等不变量的线性算子的问题被称为线性保持问题。线性保持问题是矩阵论研究领域中一......
近年来,许多数学家对矩阵空间上保某些变换,保数量特征,保某种关系等不变量的线性映射或加法映射进行了深入研究,而且不断提出了解......
近四十年,矩阵的保持问题是矩阵论中一个特别活跃的领域,因为它有很好的理论价值和实际意义,它在微分方程、系统控制、数理统计等领域......
本文首先推广了矩阵的Frobenius内积的定义,接着诱导出矩阵的Frobenius范数,且在新的矩阵范数意义下证明了其矩阵空间是一个严格凸......
学位

