数值半径相关论文
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,它已成为现代数学的一个热门分支,它与量子力学,非交换几何,线性系统和......
矩阵代数上的线性保持问题的研究已有100多年的历史.近二十年,在无限维空间上的算子代数上相类似的问题的研究也得到了广泛关注.近......
令A=(?)为复可分的Hilbert空间中的有界线性算子,本文主要研CD究了一类特殊的2 × 2分块算子矩阵的本质数值域及一般的2 × 2分块......
本文主要研究了无穷维复Hilbert空间中有界分块算子矩阵的数值半径问题.首先,研究了斜对角分块算子矩阵数值半径不等式的推广形式;......
本文主要研究了无穷维复Hilbert空间中有界分块算子矩阵的数值半径问题.首先研究了斜对角分块算子矩阵数值半径不等式的推广形式,......
设Mn是复数域C上n×n(n≥2)矩阵构成的复线性空间,Hn是复数域C上,n×n自共轭矩阵构成的实线性空间,ω(A)表示A∈Mn的数值半径,则(Mn,ω(......
本篇文章主要介绍了Grüss不等式Frobenius内积形式,Kantorovich不等式和Grüss不等式的Kronecker乘积形式,以及复数域上Kantorovi......
算子的数值域是一个非常重要的概念,并且在理论及应用方面已有广泛的研究,而且保持算子以及算子乘积的数值域的映射已经得到了完全......
借助矩阵张量积和矩阵数值半径的性质,证明了不等式r(A1(×)…(×)Ak)≥∏ki=1r(Ai)和等式r(A(×)B)=r(B(×)A),其中A1,…,Ak,A,B......
从y-数值半径的定义出发,利用矩阵张量积与诱导矩阵的性质,研究了它们的y-数值半径,得到了矩阵张量积与诱导矩阵y-数值半径的几个......

