孤立子解相关论文
对非线性演化方程(NLEEs)的精确解的研究一直是非线性领域的热点问题,本文基于符号计算软件平台Maple,利用Hirota双线性方法,研究了3......
本文主要研究1+1维,即时间和空间都是一维的完全可积非线性偏微分方程解的长时间渐近行为.这些方程在数学物理中有着广泛的应用,为......
运用经典对称方法解决广义四阶色散方程问题,得到对称约化和群不变解,包括双曲函数解,三角周期解和孤立子解,最后得出该问题的守恒......
本文主要是运用广义穿衣服方法求解变形的非线性薛定谔方程(MNLS)这里常数α>0,选取u=0作为种子解.首先从两个相容性条件的矩阵方......
本文研究了Kundu推广的非线性薛定谔方程方程(Kundu-NLS)首先,我们得到了Kundu-NLS方程的一次达布变换并进一步推广到n次达布变换,......
学位
本文利用反散射变换方法研究了扰动sine-Gordon方程.通过对可积sine-Gordon方程添加小的扰动项,得到散射数据的最低阶渐近形式的扰......
近年来,PT对称系统作为一种新型的光学结构,在通讯和物理领域中有着重大的应用。本文研究了一类具PT对称势的非线性薛定谔系统孤立......
一般而言,求解非线性偏微分方程的解析解是个非常困难的问题.本文通过坐标变换法,将两个新非线性可积方程分别与两个已知方程联系......
该文通过应用反散射方法、李群分析方法、达布变换及其函数变换,得到了一些非线性发展方程的显式解,并讨论了部分解的性质.在第二......
本文主要讨论两类可积系统的行波解的问题,一类是反应扩散方程,一类是非线性波方程。在第二章的内容里,我们主要研究反应扩散方程的行......
本文基于现有的孤立子理论与现代计算机技术,运用F-展开法、齐次平衡法、以及改进的tαnh函数法,研究了多种具有物理背景的非线性发......
为了探讨非线性可积微分一差分方程族的生成及有关性质,本文利用离散的零曲率表示的方法分别构造了若干个Lax可积的微分一差分方程......
本文主要研究经典Boussinesq-Burgers(BB)方程和广义Wadati-Konno-Ichikawa(WKI)方程的Darboux变换和孤立子解,共分三章:
在第......
本文研究的内容主要包括三个方面:Hirota双线性方法、孤子方程的Wronski行列式解和孤子解的Pfaff式表示.第一章简要介绍了孤立子的......
本文主要讨论了U(1)场中含有Chern-Simons项的CP1模型,并且利用变分法证明了任意涡旋状孤立子解的存在,最后给出了孤立子解的渐近性......
近年来,对非线性问题的研究一直是人们关注的热点,非线性科学也在科学技术的各个领域做出了重大贡献。本文主要围绕精确求解非线性......
本文主要内容概括如下:
第一章首先介绍了孤立子理论的发展历程、主要求解方法和当今孤立子的研究范围与应用方向。然后阐述李......
非线性色散水波是自然界中重要的可观察的现象之一。波浪通过材料介质(固体,液体或气体)波速传播,其方式和速度依赖于介质的弹性和惯性......
本文以辅助方程方法为基本工具研究了若干变系数非线性发展方程和带高阶非线性项的非线性发展方程的精确解.以伴随方程方法及相关......
通过对偏微分方程的研究,进一步求出孤立子解,将其应用在数学、物理、金融等领域的模型中,使复杂问题简单化.本文利用tanh函数展开......
基于1个3×3谱问题,利用屠规彰格式,得到了1个新的多变元可积孤子方程族.它们是著名的薛定鄂方程族的向量形式,并且是Liouville可......

