填充维数相关论文
重分形分析是分形几何和动力系统的一个重要分支。重分形测度及重分形分析的概念首先由一些物理学家[39]提出。Barreira, Pesin和S......
该文分为两部分.在第一部分中我们讨论一类康托型函数不可微点集的豪斯道夫维数,在第二部分中作者讨论交错跳跃函数及自相似函数例......
本文分两章,第一章介绍了分形几何中所涉及的一些基本而重要的概念,如Hausdorff测度与维数,闵可夫斯基测度与维数,填充测度与维数,......
本文主要讨论了分形几何中的一个重要内容一重分形分析。首先,推广了在度量空间中所定义的中心Hausdorff测度和填充测度。设X是度量......
本文主要研究了在不满足强分离条件下分形的一些性质,包括分形的李卜希兹等价,自共形测度的重分形分析和一类递归集的维数估计. ......
本文主要研究了自相似集与Moran集的分形维数与测度及类切饼集上多重分形Hausdorff测度和多重分形填充测度的等价性. 第一章我......
本文的工作主要包括以下两个部分: 第一部分,我们在没有参考丰德军文章(Math.Nachr.,248-248(2007)89-105)的情况下得出的结果:......
学位
本文主要研究了有限个测度的联合Lq-维数及有限个自相似测度的联合发散点集合的填充维数。
第一章绪论中我们简单回顾了分形......
本文主要研究了在概率空间中关于两个概率测度的多重分形分析,及两个图有向自相似概率测度的多重分形谱。第一章,我们简单阐述了当......
本文通过对一类特殊的齐次Moran集的讨论,证明了有无穷多个齐次Moran集达到集族维数的最小值.对于一般Moran集,本文详细地证明了一个......
本文主要研究了满足强分离条件的有限个随机自相似测度和满足强开集条件的有限个随机自共形测度的一些同步性质,然后计算了随机自......

