可积耦合相关论文
本文研究了非线性数学物理中的几类非线性微分方程的可积耦合、Hamilton结构、Darboux变换和精确解。主要开展了四个方面的研究工......
本论文的主要内容分为三部分.第一部分,研究了几类孤立子可积系及其Hamilton结构.首先,在李代数B2和由它构造的李代数上,选取了两......
可积耦合系统是孤立子与可积系统领域的一个热门研究对象,利用它能推导出许多有实际研究价值的孤立子与可积方程。达布变换一直是......
学位
本文主要研究以下内容:一是构造Levi可积族的可积耦合系统并求双Hamilton结构,再对多分量KN可积族和KWI可积族进行了初步的研究,二......
文章主要讨论了可积晶格方程的Hamilton结构的建立、无穷守恒律的获得、可积晶格方程族的可积耦合系统、非等谱形式以及Darboux变......
可积系统是当代非线性科学的一个主要内容,它在数学、物理、生物、通信等各领域都得到了广泛的研究与应用,它经历了一个长期的历史......
在可积系统的研究中,寻找可积系统的可积耦合及其哈密顿结构是两个非常重要的研究课题。本文围绕这两个主题分别研究了可积系统、......
该文分别构造了具有2个位势和3个位势的等谱特征问题.从等谱问题出发,利用屠格式导出了著名的广义Burgers方程族和一类新的MKdV-NL......
本文研究的内容主要包括三个方面:(2+1)维可积方程族扩展可积模型的生成,多分量可积方程族的生成及其扩展可积模型,两个高维的Lie代数......
在可积系统的研究中,寻找可积系统的可积耦合及其哈密顿结构是两个非常重要的研究课题。本文围绕这两个主题分别研究了可积系统、分......
本文研究的内容主要包括三个方面:孤立子方程族的生成,孤立子方程族的可积耦合和孤立子方程族的哈密顿结构。在第二章中,首先,根据已有......
本文研究的内容主要包括两个方面:可积方程族的生成和可积耦合.第一章介绍了孤立子理论的产生与发展和研究概况.第二章回顾了寻求可......
近年来,随着数学和物理的不断发展,人们开始研究Hom型李(超)代数。我们知道,Hom-李(超)代数本身就是李(超)代数的某种形变,当Hom-李(超......
本文基于loop带数(A)2的一个子代数,利用屠格式导出NLS可积方程族,另外,利用迹恒等式建立其Hamilton结构,再进一步求出可积耦合系......
期刊
首先构造了loop代数A ~2的一个新的子代数,设计了一个等谱问题.应用屠格式求出了著名的AKNS方程族的一类扩展可积模型,即可积耦合.......

