P-幂零相关论文
本学位论文的主要研究内容是子群的广义正规性与群系剩余的关系,涉及三个方面,即子群的置换性与群系剩余的关系,子群的可补性与群......
通过对有限群理论的学习,我们知道有限群的结构与其子群的性质密切相关,对不同子群性质的研究可以得到不同结构的有限群。本文主要......
本文的主要目的是研究子群的s-置换性、s-拟正规性和s-拟正规嵌入性对有限群结构(如:幂零性、p-幂零性、超可解性、p-超可解性)的影响......
本课题重点是探索有限群的准素子群对群结构的影响,内容主要涵盖两方面:一方面通过准素子群的X-s-半置换性质探讨有限群的子群结构......
本文主要研究有限群的(?)-条件半置换子群对有限群结构(超可解性、p-超可解性、p-幂零)的影响,同时还研究了ss-拟正规子群以及c-正......
本文使用有限群的某些子群的广义正规性来讨论有限群的性质,我们从三类问题进行讨论:第一类:G是有限群,子群H称为在G中是n-嵌入的,......
本论文结合C#-正规子群和CAP-子群的概念,引入拟C#-正规子群的概念,通过研究具有拟C#-正规特性的子群,进一步探讨有限群的可解性,p......
设F是一个群类,称子群H为群G的.F*-子群,如果存在G的正规子群B,使得HB(?)G,满足(q,|H|)=1的任意素数q,B都包含G的一个Sylow q-子群......
本文处理的都是有限群。利用子群的(?)-超中心性及可补性研究有限群的结构和性质是群论研究的一个重要课题,本文利用子群(?)-超中......
本文重点研究极小子群中心化子、极小子群的s-正规性对有限群结构(可解性、p-可解性、群的p-幂零性)的影响。 全文共四章。 ......
本文研究有限群的某些子群的性质对有限群结构的影响,内容共分四章。 第一章作为全文的引言,简述了本文取得的主要工作,并列出了与......
设G是有限群,H≤G,K≤G,如果HK=KH,那么称H和K置换;如果H与G的的任意Sylow子群可置换,那么称H是G的S-拟正规子群;如果H的每个Sylow子群......
群论研究的一个主要任务是研究各种群的性质和结构,而通过子群的广义正规性研究有限群的结构是近年来非常活跃的课题之一.
本......
设G是有限群,G的子群H称为G的半CAP-子群,如果存在G的一个主群列1=G0(△)G1(△)…(△)Gn-1(△)Gn=G使得H覆盖或者避开Gi/Gi-1,其中......
该文主要得到:设H是有限群G的正规子群使得G/H为p-幂零群,其中p是|G|的一个素因子且(|G|,p-1)=1.如果存在H的Sylow p-子群P,使得P......
设G是有限群,G的子群H称为G的半CAP-子群,如果存在G的一个主群列1=G0(△)G1(△)…(△)Gn-1(△)Gn=G使得H覆盖或者避开Gi/Gi-1,其中......
称子群H在群G中弱S-半置换的,如果G存在的一个次正规子群B,使得G—HB且H∩B≤Hm,其中HssG包含在H中的G的最大的S-半置换子群.利用Sylow......
用Sylow子群的极大子群SS-拟正规和C-补性质来刻画一些群系.证明:若有限群G的所有极大Sylow子群是SS-拟正规的或者C-补的,那么G是p......
设K是有限π-可分群G的子群,则vπ(K)整除vπ(G),其中vπ(G)表示G的Hallπ-子群的数量.这个结果给出了由Navarro最近得到的一个定......
称群G的一个子群H在G中弱s-置换嵌入的,如果存在G的一个次正规子群T和包含在H中的G的一个s-置换嵌入子群Hse,使得G=HT且H ∩ T≤Hs......

