芬斯勒度量相关论文
芬斯勒卷积度量是黎曼卷积度量的自然推广.芬斯勒卷积度量是包含球对称芬斯勒度量在内的一类新的芬斯勒度量,并属于广义(α,β)度......
芬斯勒几何是没有二次型限制的黎曼几何[1],它在各个方面都有着重要应用.随着研究的深入及对黎曼几何的推广,芬斯勒几何的研究成为......
芬斯勒卷积度量是黎曼卷积度量的自然推广,它是包含球对称芬斯勒度量在内的一类新的芬斯勒度量。黎曼几何量是黎曼几何中相应的几......
芬斯勒几何中的一个重要问题是构造射影平坦和对偶平坦的芬斯勒度量,基于这一点,本文主要研究了球对称的芬斯勒度量,通过求解对偶......
本文是关于推广的Douglas-Weyl度量曲率性质的研究。首先,我们研究了一类特殊的推广的Douglas-Weyl度量——射影平坦芬斯勒度量,证......
本文研究了芬斯勒几何中一类十分重要的度量——(α,β)?度量.我们首先研究了两类重要的局部对偶平坦的(α,β)?度量的共形不变性......
芬斯勒几何是比黎曼几何更广泛的一类度量几何,芬斯勒几何中最基本的问题之一是研究具有某些曲率性质的芬斯勒度量的刻画与分类.Dou......
芬斯勒空间(M,F)的一条测地线称为齐性的,如果它可表示为(M,F)的等距群的某个单参数子群的轨道.芬斯勒空间称为测地轨道空间,如果......
本文研究了具有标量旗曲率的芬斯勒度量的若干重要性质。首先,我们在平均Landsberg曲率满足某种特定条件的情形下,刻画了具有标量旗......
学位
本文首先研究了完备的Douglas空间(M,F),证明了如果其Cartan张量是有界的,且满足H=0和Ejk·l|m=0,则F为Berwald度量,其中E为F的平均Ber......
本文研究了芬斯勒几何中一类新的几何量,即射影Ricci曲率。我们主要研究了射影Ricci曲率的射影不变性和射影Ricci平坦的Kropina度量......
芬斯勒几何中的Ricci曲率是黎曼几何中Ricci曲率的自然拓广,在芬斯勒几何中扮演着十分重要的角色。近年来,关于Ricci曲率的研究受到......
关于(α,β)-度量是一类非常重要的芬斯勒度量,这里α表示流形上的一个黎曼度量,β为流形上的一个1-形式。本文主要研究了(α,β)-度......
本文着重研究了局部对偶平坦的几类重要的(α,β)-度量,这里α表示流形上的一个黎曼度量,β表示流形上的一个1-形式. 我们首先在α是......
本文主要围绕芬斯勒几何中一类重要的几何量——Landsberg曲率展开了深入研究。首先,我们对射影平坦的(α,β)-度量展开了研究,并分......
芬斯勒度量的射影性质和共形性质唯一地决定了度量的结构。因此,对芬斯勒度量射影性质和共形性质的研究一直是芬斯勒几何学的研究热......
在Rn上的开子集射影平坦芬斯勒度量是希尔伯特第四问题的正则情况.作者研究了m次根的芬斯勒度量以及广义的m次根的芬斯勒度量,证明......
找到了一些方程去刻画局部对偶平坦的Matsumoto度量F=α2/α-β,其中α=√aijyiyj,β=biyi.同时对局部对偶平坦且具有迷向S-曲率的......

