共形不变性相关论文
本文基于对称性理论研究了某些力学系统守恒量的若干问题.目前研究的对称性主要有Noether对称性、Lie对称性、Mei对称性以及共形不......
利用对称性寻求守恒量在现代数学,力学中占据着非常重要的地位。寻求守恒量的主要方法有Noether对称性,Lie对称性以及近年提出来的形......
随机Loewner演变(stochastic Loewner evolution,简称SLEκ)是驱动项为(?)乘以一个一维布朗运动的经典Loewner微分方程的解,它是一类集......
用对称性寻求各种约束力学系统的守恒量是分析力学的一个近代发展方向,在数理科学中具有重要的理论意义和实际价值.研究约束力学系......
研究动力学系统的对称性与守恒量是分析力学的一个重要研究方向。利用对称性来寻找守恒量方法有很多,比较常见有三种:Noether对称性......
动力学系统的共形不变性是数学、力学、物理学、工程科学中一个十分普遍的重要性质,对研究实际动力学模型有着广泛的应用.1996年以......
芬斯勒度量的射影性质和共形性质唯一地决定了度量的结构。因此,对芬斯勒度量射影性质和共形性质的研究一直是芬斯勒几何学的研究热......
研究了非Chetaev型非完整约束系统Tzénoff方程Mei对称性的共形不变性及其守恒量,在给出该系统Mei对称性定义和判据方程的基础上,......
通过完整系统的Tzénoff方程,给出了该系统Tzénoff方程的Lie对称性及其共形不变性的定义,研究了该系统Tzénoff方程Lie对称性的共形......

