S-曲率相关论文
本文主要针对芬斯勒流形上的导航术问题展开了研究,其内容涉及芬斯勒流形上的导航术问题与流形的单位切球的几何之间的重要关系,锥......
本文主要研究一类特殊的(α,β)度量-反正切芬斯勒度量F=α+εβ+βarctan(β/α)(其中s=β/α,α=(?)是一个黎曼度量,β= bi(x)yi......
(a,β)-度量是一类非常重要的Finsler度量,这里a为流形上的一个Riemann度量,b为流形上的一个1-形式。本文主要研究了(a,β)-度量的......
Finsler几何中的非黎曼几何量刻画的是Finsler几何与黎曼几何的不同之处.对这些量进行研究有利于我们看清楚它们之间的差异,并且对......
Randers度量是最简单、最重要且与黎曼度量关系最为密切的一类Finsler度量,它是1941年G.Randers在研究广义相对论,讨论四维空间中的不......
本文研究了具有标量旗曲率的a b-度量的若干分类问题。首先我们考虑了具有标量旗曲率K的形如Fa eb b a=+k2/(ke为常数且0k1)和F a a ......
学位
芬斯勒(Finsler)几何是现代数学中的重要前沿学科,是其度量无二次型限制的黎曼几何.(α,β)-度量是一类与黎曼度量密切相关的有着......
本文着重研究了局部对偶平坦的几类重要的(α,β)-度量,这里α表示流形上的一个黎曼度量,β表示流形上的一个1-形式. 我们首先在α是......
本文主要研究了一类特殊的(α,β)-度量-形如F=αexp(β/α)的指数芬斯勒度量为对偶平坦或射影平坦的条件及其性质.这里α=√aij(x)......
找到了一些方程去刻画局部对偶平坦的Matsumoto度量F=α2/α-β,其中α=√aijyiyj,β=biyi.同时对局部对偶平坦且具有迷向S-曲率的......

