Lie导子相关论文
设U是一个三角代数且满足πA(Z(U))=Z(A)和πB(Z(U))=Z(B),φ是U上的一个R-线性映射。若ID(U)是关于φ的一个Lie不变子空间,则在U上存在一个Lie导......
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,现在这一理论已成为现代数学中的一个热门分支.它与量子力学,非交换几何......
随着导子和同构理论的丰富和发展,局部Lie导子、2-局部Lie导子、局部同构和2-局部同构的讨论受到研究者的广泛关注.本文首先刻画了......
本文主要研究了因子von Neumann代数上的非线性混合ξ-Jordan三重可导映射和双局部Lie导子的问题.主要内容如下:第一章主要介绍了......
本文旨在研究算子代数上若干映射的刻画问题,全文共分六章.第一章首先介绍了导子,Jordan导子以及Lie导子等映射的基本概念,并简单......
完全保持问题、导子、Jordan导子、Lie导子是算子代数与算子理论研究中非常重要的内容,受到了许多学者的广泛关注.本文主要用完全......
各类导子是算子代数和算子理论中重要的研究课题之一.本文主要对von Neu-mann 代数上的(广义)Lie n-导子进行研究,从不同角度给出......
设X是维数大于2的Banach空间,映射δ:B(X)→B(X)是2-局部Lie三重导子,则对所有A∈B(X)有δ(A)=[A,T]+ψ(A),这里T∈B(X),ψ是从B(X......
本文主要讨论了算子代数上一些映射的局部性.涉及的代数主要包括von Neumann代数、矩阵代数、三角代数以及Hilbert C*-模上的算子......
高阶导子和Lie导子是算子代数上两类非常重要的映射,受到了许多数学工作者的广泛关注.本文我们将对它们做进一步的探讨和研究. ......
本文主要研究Banach空间上自反算子代数上Lie导子的结构,全文共分四节. 第一节介绍了一些基本概念,问题背景和主要研究内容.第二......
本文主要研究Hilbert空间上的套代数、Banach空间上的JSL代数以及其上的一类特殊的自反算子代数上的线性映射在某些点处的Lie可导......
导子,Jordan导子和Lie导子作为算子代数与算子理论研究中非常重要的映射,受到了许多数学家的广泛关注。本文我们将通过局部性质对......
本文对因子von Neumann代数中套子代数上的线性映射L:algMβ→M满足L(AB-BA)=L(A)B-BL(A)+AL(B)-L(B)((A)A(B)A,B∈algMβ)进行了......
期刊

