论文部分内容阅读
【摘要】 面对新一轮课程改革,结合新课程“以人为本”的教学理念,就数学教学所倡导的“创设情境、双向思辨、精讲归纳、巩固练习及悟通创新”的五步课堂教学方法,其中最困难、最关键的便是情境创设,做好这一步,是区别于传统教学的关键,有利于更好地倡导建构性学习,发展学生的创新思维。那么在新课程教学中如何合理建构数学情境,培养学生的数学探究能力呢?
【关键词】 高中数学 情景创设
【中图分类号】 G633.6
【文献标识码】 A
【文章编号】 1992-7711(2020)01-029-010
一、从实际生活,特别是学生自身生活实际中创设情境
我国的数学教育在很长一段时间内对于数学与实际的联系未给予充分的重视,学生对数学学习的意义不明确,觉得数学没什么用,学习数学枯燥、乏味。课程标准明确提出要发展学生的数学应用意识,力求使学生体验数学在解决实际问题中的作用,促进学生逐步形成和发展数学应用意识,提高实践能力。因此,教师可以引导学生对实际生活中的现象进行观察,利用数学与实际生活的联系来创设情境。
问题1:在“算术平均数与几何平均数”的教学中,可利用以下实际问题来创设情境:用一个有毛病的天平(天平的两臂之长略有差异,其它因素忽略)来称物体的质量,有学生说只要把物体放左右盘中各称量一次,再把所得结果相加除以2即可得到物体的质量,你认为可行吗?
问题2:用一张长80cm,宽50cm的长方形铁皮,做一只无盖长方形铁皮盒(焊接厚度与损耗不计),这只铁皮盒尽可能大的体积是多少?
用学生自身生活实际创设情境,不仅可以让学生认识数字来源于生活,应用于生产生活,培养学生的数学应用意识,而且所设置的情境与学生实际生活息息相关,所以能大大激发学生的学习兴趣,使学生的探索热情空前高涨。
二、用类比猜想创设学习情境
类比、猜想是创造性思维的一种重要形式,学生在学习旧知识的过程中,会对知识的联系产生类比联想,并提出质疑,教师适时引导学生进行类比、猜想,可以激发学生创造的思维火花,收到意想不到的良好效果。
问题1:勾股定理大家都很熟悉,当一个三角形ABC的三边之长是a,b,c满足时,该三角形是直角三角形。如果让指数作一些变化:如2→n,即时,情况会是什么样呢?
教师明确指出需要思考的问题,但结论留给学生自已去猜想、探求。学生首先会尝试着从具体的几个例子出发,如n=3,n=4,验证三角形是锐角三角形,通过同学间的相互交流,很自然会猜想(n
【关键词】 高中数学 情景创设
【中图分类号】 G633.6
【文献标识码】 A
【文章编号】 1992-7711(2020)01-029-010
一、从实际生活,特别是学生自身生活实际中创设情境
我国的数学教育在很长一段时间内对于数学与实际的联系未给予充分的重视,学生对数学学习的意义不明确,觉得数学没什么用,学习数学枯燥、乏味。课程标准明确提出要发展学生的数学应用意识,力求使学生体验数学在解决实际问题中的作用,促进学生逐步形成和发展数学应用意识,提高实践能力。因此,教师可以引导学生对实际生活中的现象进行观察,利用数学与实际生活的联系来创设情境。
问题1:在“算术平均数与几何平均数”的教学中,可利用以下实际问题来创设情境:用一个有毛病的天平(天平的两臂之长略有差异,其它因素忽略)来称物体的质量,有学生说只要把物体放左右盘中各称量一次,再把所得结果相加除以2即可得到物体的质量,你认为可行吗?
问题2:用一张长80cm,宽50cm的长方形铁皮,做一只无盖长方形铁皮盒(焊接厚度与损耗不计),这只铁皮盒尽可能大的体积是多少?
用学生自身生活实际创设情境,不仅可以让学生认识数字来源于生活,应用于生产生活,培养学生的数学应用意识,而且所设置的情境与学生实际生活息息相关,所以能大大激发学生的学习兴趣,使学生的探索热情空前高涨。
二、用类比猜想创设学习情境
类比、猜想是创造性思维的一种重要形式,学生在学习旧知识的过程中,会对知识的联系产生类比联想,并提出质疑,教师适时引导学生进行类比、猜想,可以激发学生创造的思维火花,收到意想不到的良好效果。
问题1:勾股定理大家都很熟悉,当一个三角形ABC的三边之长是a,b,c满足时,该三角形是直角三角形。如果让指数作一些变化:如2→n,即时,情况会是什么样呢?
教师明确指出需要思考的问题,但结论留给学生自已去猜想、探求。学生首先会尝试着从具体的几个例子出发,如n=3,n=4,验证三角形是锐角三角形,通过同学间的相互交流,很自然会猜想(n