冻土水力传导系数及水热盐耦合分离冰冻胀模型研究

来源 :中国矿业大学(江苏)   | 被引量 : 1次 | 上传用户:yun_breakcode
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
分凝冻胀是冻土工程中关注的热点和难点。目前,已有的冻胀理论模型和试验多以不含盐的土体为研究对象,而冻土区实际工程常常遇到盐渍化土体,与不含盐冻土的冻胀机理存在显著差异,含盐冻土中分凝冰的出现和生长机制尚不清楚。因此,开展一维冻结下含盐冻土冻胀机理研究对盐渍化冻土工程建设具有重要意义和科学价值。
  本文以多年或季节性冻土地区盐渍土工程涉及的一维冻结问题为背景,采用理论分析、数值计算、室内试验相结合的研究手段,对盐渍化冻土物化特性、水盐分布、透镜体演化及变形机理进行了系统的研究。在建立具有明确物理意义的直毛细管下冻土水力传导系数理论模型的基础上,考虑冻结过程孔隙结构的改变进一步修正水力传导系数;建立了盐分作用下单一透镜体的演化模型;以及水热盐耦合分离冰冻-盐胀理论模型;揭示了一维冻结下盐渍化冻土冻盐胀、结晶盐分布、分凝冰生长及层状分布机理;研发了冻结过程盐胀动态测定的新方法。本文获得主要研究成果如下:
  (1)考虑土颗粒对未冻水膜的吸附作用以及盐分对孔隙水的影响,优化了基于冰水界面水膜热力学理论的等效水压力表达式。同时,引入毛细管理论,获得直毛细管下含盐正冻土水力传导系数模型,并与试验数据及多种经验方法比对,证明了模型的合理性和可靠性。考虑冻结过程中土体的宏观变形是孔隙形态改变的结果,将孔隙半径修正因子引入局部纠正系数和渗流路径的曲折度,进一步完善了考虑变形作用下正冻土水力传导系数模型。最后,给出该模型中参数m的确定方法,并认为对于冻土m的最优值应取3.8。
  (2)考虑冻结缘内浓度梯度、温度梯度和荷载梯度的作用,研究了含盐冻土中水分迁移的驱动力,揭示了含盐条件下分凝冰的生长机制,结果表明透镜体生长厚度与温度梯度绝对值成正比,而压力梯度和浓度梯度则抑制透镜体的生长,三个梯度本质上影响等效水压力梯度。浓度梯度对透镜生长的影响度要高于另外两种因素。因此,透镜体演化过程中浓度梯度和压力梯度需要重视且必须考虑。
  (3)推导获得考虑盐分影响的土颗粒表面水膜压力,发展了含盐冻土中分凝冰的分离准则。考虑盐分结晶以及溶质在冰水两相中的分布,结合溶质结晶动力学方程,建立了适用于正冻土的溶质迁移方程。基于此,耦合水和热方程、主动区固结作用、分离准则以及含盐冻土冻结特征曲线,发展了水热盐耦合分离冰冻盐胀模型体系。该方程体系综合考虑了原位冻胀、分凝冻胀、盐胀以及土骨架变形,能够很好地预测冰透镜体以及结晶盐的发育。若不考虑盐分影响,则模型退化为传统的水热耦合分离冰冻胀模型。
  (4)对于初始含量较小的土体,冻结过程中结晶盐易出现在最暖分凝冰靠近冷端的位置。而对于初始含盐量较大的土体,盐分结晶会发生在冻结的全过程,在最暖分凝冰靠近冷端的位置以及最后冻结缘中盐分结晶量大。结晶盐的出现与分布是冰水界面溶质有效分布系数对浓度影响的结果。高含盐量土体中分凝冰呈现的微层状分布特征则与水膜压力和等效水压力有关。
  (5)基于土体电阻与孔隙浓度具有强烈依赖性,通过理论推导出含盐正冻土电阻率与未冻水含量、温度以及孔隙溶液浓度之间的数学关系式,进而计算盐胀变形量。该方法为正冻土中盐胀的测量提供了一种新思路,也为研究冻胀、盐胀的演化机理提供理论支撑。
其他文献
泛连接蛋白-1(Pannexin 1, PANX1)介导细胞内三磷酸腺苷(Adenosine 5’-Triphosphate, ATP)释放,通过嘌呤能信号转导通路调控一系列重要的生理和病理生理过程,包括凋亡细胞清除、炎症反应、肿瘤细胞发生发展和转移。PANX1通道能够响应多种细胞内外的刺激进而开放,例如羧基末端尾巴被半胱天冬酶切割、细胞外钾离子浓度升高、磷酸化等。目前PANX1的分子结构尚未解析
背景:相较于传统的大细胞量转录组测序方式,单细胞转录组测序技术提供了新的研究维度并在发育、生理、疾病等领域的研究应用广泛。由于哺乳动物单个细胞内RNA总量微少,目前所有单细胞转录组测序技术在建库时均需在RNA逆转录生成cDNA后进行预扩增,这不可避免会产生扩增偏差。在全长转录本测序中,扩增偏差会造成转录本不能被均匀覆盖,造成后续分析如转录本丰度定量、RNA剪接变体、长链非编码RNA识别等不准确。 
学位
26S蛋白酶体负责降解真核细胞中绝大多数的蛋白,与几乎所有的生命活动密切相关。越来越多的证据表明,磷酸化修饰对调控蛋白酶体的功能发挥重要作用。质谱数据显示,人类蛋白酶体上有100多个酪氨酸(pTyr)磷酸化位点,但人们对其功能和调控还知之甚少。在本研究中,我们证明蛋白酶体亚基Rpt2-Tyr439位点的磷酸化抑制蛋白酶体的组装,并意外发现Tyr439的磷酸化依赖于Rpt2N-肉豆蔻酰化介导的膜定位
第一部分PRPS1基因变异功能验证及致病机制研究  耳聋是临床上最常见的感觉神经系统缺陷疾病之一。据世界卫生组织(World Health Organization,WHO)统计,全世界超过5%的人口——4.66亿人患有不同程度的听力损失,约60%的听力损失因为基因缺陷导致。目前国际遗传性耳聋网站(hereditaryhearingloss.org)已收录遗传性非综合征型耳聋基因120个,常显耳聋
T淋巴细胞作为获得性免疫系统的关键组分,被认为由造血干细胞(hematopoieticstem cells,HSCs)通过一个严格等级约束产生。在小鼠成年造血过程中,具有淋-髓系潜能的淋巴多能前体(lymphoid-primed multipotent progenitors, LMMPs)产生胸腺定居的前体(thymus-seeding progenitors, TSPs)。随后,TSPs定植到
学位
仿生偏振光导航是以大气偏振模式为罗盘的自主导航方法,其覆盖范围大,对人为因素造成的干扰不敏感,对于卫星拒止环境下的自主导航具有重要军事意义和研究价值。为了解决仿生偏振光导航研究中太阳位置的获取这一关键问题,本文提出了两种大气偏振模式∞字形特征表征方法,并与和声搜索算法相结合,建立了太阳位置求解模型,实现了用于仿生偏振光导航的太阳位置的求解。  主要研究工作如下:  (1)通过研究不同天气条件下大气
移动通信技术的飞速发展大力推动着以网状结构布网而不过度依赖于基础设施的分布式无线网络成为未来移动网络发展的重要形式之一。随着节能环保的新一代绿色通信理念逐渐深入人心,在满足无线用户日益严苛的服务质量基础上,追求高效率、低能耗的通信环境已经成为了当今国内外通信领域的研究热点。协同HARQ技术因其既能有效提供分集增益又能显著增强传输可靠性被证明是一种行之有效的差错控制技术。由于区别于传统网络的诸多特性
边缘计算作为一种新的计算范式,能够增强资源相对稀缺的移动设备及物联网(Internet of Things, IoT)设备功能,并执行数据、计算密集型应用程序,同时与资源丰富的网络服务器协作以实现无处不在的计算。它作为云的扩展为要求低延迟的应用程序提供了更多资源。但是,新范式也将带来新的安全问题。臭名昭著的分布式拒绝服务攻击(Distributed Denial-of-Service, DDoS)
TBM工法在交通、水利和矿山等领域应用广泛,在高山地区的TBM隧道施工中难以避免会遇到高应力环境下的软硬复合地层工况。深部软硬复合地层中的软岩和高地应力构成了围岩发生挤压大变形的基本条件,极易引起隧道工程的失稳破坏。基于深部复合地层TBM隧道施工的复杂工况条件,围岩稳定控制必须深入揭示支护体系的作用机理。本文依托国家973项目课题,采用室内试验、数值模拟、理论分析以及智能算法相结合的方法,包括特色
学位
随着矿山开采向深部发展以及开采区域的扩展,井筒、巷道与周围地质环境相互作用特征也随之发生变化,井巷工程支护破坏程度更为严重、破坏方式更为复杂。准确描绘出井巷围岩应力场分布是保障其安全的基础。这类复杂工程问题的本质是力学问题,解决这些问题不仅需要借助现代数学物理方法与研究手段,更需要理论联系实际,需要工程师与研究者的紧密配合。  本文将辛弹性力学方法引用到矿山工程中复杂边界条件的圆、非圆巷道,多层厚
学位