论文部分内容阅读
随着矿山开采向深部发展以及开采区域的扩展,井筒、巷道与周围地质环境相互作用特征也随之发生变化,井巷工程支护破坏程度更为严重、破坏方式更为复杂。准确描绘出井巷围岩应力场分布是保障其安全的基础。这类复杂工程问题的本质是力学问题,解决这些问题不仅需要借助现代数学物理方法与研究手段,更需要理论联系实际,需要工程师与研究者的紧密配合。
本文将辛弹性力学方法引用到矿山工程中复杂边界条件的圆、非圆巷道,多层厚壁圆筒、立井井筒等工程结构及围岩应力、位移等力学问题分析。从弹性力学基本微分方程出发,以广义能量变分原理为基础,依据勒让德变换引入位移的对偶变量建立哈密顿对偶方程组。将原欧氏空间中由位移变量组成的力学问题,转变为辛几何空间中对偶变量组成的新力学问题。依照辛几何空间与哈密顿对偶方程组的特点,在混合变量表示的齐次边界条件下应用分离变量法求解混合状态方程,得到问题的辛本征向量与辛本征值解析表达式。论文建立的矿山井巷工程力学问题的辛体系求解方法,为等量分析矿山及地下工程类似力学问题提供了新途径。
(1)针对圆形巷道平面应变问题,在极坐标系中建立了扇形区域哈密顿力学求解模型,导出了齐次和非齐次边界条件下,混合状态微分方程的通解和特解表达式。通过比较有限元法和辛方法计算巷道围岩应力的结果,验证了辛方法的正确性和可靠性。讨论了非静水地应力下圆形巷道围岩应力,随侧向压力系数的变化,侧向压力系数越小,应力分布越不均匀;当侧向压力系数小于0.3时,围岩开始出现拉应力。特别当侧向压力系数等于0时,围岩拉应力达到极值。
(2)针对多层厚壁圆筒的力学问题,根据边界条件和连续光滑条件建立协调方程。分别讨论了多层厚壁圆筒间光滑接触和紧密联接两种条件下,厚壁筒内、外层接触面上应力场和位移场的差别。并讨论了侧向压力系数、厚壁筒材料的弹性模量比等因素对厚壁筒应力场的影响。得到了厚壁筒材料越软分担的应力数值越小,厚壁筒材料越硬则分担的应力数值越大,周向应力极值一般出现在弹性模量较大的厚壁筒区域等结论。
(3)利用共形映射实现区域转换的同时,将应力分量、位移分量以及边界条件进行相应的变化。将非圆形巷道力学问题转换为圆形区域边值问题,结合辛算法给出了椭圆巷道围岩应力场分布。通过算例分别讨论了内压力、形状系数和侧向压力系数等因素对围岩应力场的影响。获得了增加内压力可以有效地降低围岩压应力,有助于提升围岩强度;随侧压力系数的增大,围岩周向应力的波动幅度变小;围岩周向应力的最小值与形状系数无关,最大值与形状系数密切相关等相关结论。
(4)针对立井井筒力学问题具有空间轴对称的特点,在空间柱坐标系下建立哈密顿混合状态方程,运用分离变量法给出混合状态方程的通解形式。通解方程中的未知参数根据井筒侧面及端部边界条件具体定出。通过工程算例分析了井筒端部的局部解,探讨了圣维南原理的适用条件及适用范围。讨论了侧向压力系数、井壁厚度以及井筒半径对不同井深应力分布的影响。所得的这些结论对分析立井井筒受力、完善立井井壁设计以及遏制井筒变形破坏等工程问题,提供了重要理论依据。
本文将辛弹性力学方法引用到矿山工程中复杂边界条件的圆、非圆巷道,多层厚壁圆筒、立井井筒等工程结构及围岩应力、位移等力学问题分析。从弹性力学基本微分方程出发,以广义能量变分原理为基础,依据勒让德变换引入位移的对偶变量建立哈密顿对偶方程组。将原欧氏空间中由位移变量组成的力学问题,转变为辛几何空间中对偶变量组成的新力学问题。依照辛几何空间与哈密顿对偶方程组的特点,在混合变量表示的齐次边界条件下应用分离变量法求解混合状态方程,得到问题的辛本征向量与辛本征值解析表达式。论文建立的矿山井巷工程力学问题的辛体系求解方法,为等量分析矿山及地下工程类似力学问题提供了新途径。
(1)针对圆形巷道平面应变问题,在极坐标系中建立了扇形区域哈密顿力学求解模型,导出了齐次和非齐次边界条件下,混合状态微分方程的通解和特解表达式。通过比较有限元法和辛方法计算巷道围岩应力的结果,验证了辛方法的正确性和可靠性。讨论了非静水地应力下圆形巷道围岩应力,随侧向压力系数的变化,侧向压力系数越小,应力分布越不均匀;当侧向压力系数小于0.3时,围岩开始出现拉应力。特别当侧向压力系数等于0时,围岩拉应力达到极值。
(2)针对多层厚壁圆筒的力学问题,根据边界条件和连续光滑条件建立协调方程。分别讨论了多层厚壁圆筒间光滑接触和紧密联接两种条件下,厚壁筒内、外层接触面上应力场和位移场的差别。并讨论了侧向压力系数、厚壁筒材料的弹性模量比等因素对厚壁筒应力场的影响。得到了厚壁筒材料越软分担的应力数值越小,厚壁筒材料越硬则分担的应力数值越大,周向应力极值一般出现在弹性模量较大的厚壁筒区域等结论。
(3)利用共形映射实现区域转换的同时,将应力分量、位移分量以及边界条件进行相应的变化。将非圆形巷道力学问题转换为圆形区域边值问题,结合辛算法给出了椭圆巷道围岩应力场分布。通过算例分别讨论了内压力、形状系数和侧向压力系数等因素对围岩应力场的影响。获得了增加内压力可以有效地降低围岩压应力,有助于提升围岩强度;随侧压力系数的增大,围岩周向应力的波动幅度变小;围岩周向应力的最小值与形状系数无关,最大值与形状系数密切相关等相关结论。
(4)针对立井井筒力学问题具有空间轴对称的特点,在空间柱坐标系下建立哈密顿混合状态方程,运用分离变量法给出混合状态方程的通解形式。通解方程中的未知参数根据井筒侧面及端部边界条件具体定出。通过工程算例分析了井筒端部的局部解,探讨了圣维南原理的适用条件及适用范围。讨论了侧向压力系数、井壁厚度以及井筒半径对不同井深应力分布的影响。所得的这些结论对分析立井井筒受力、完善立井井壁设计以及遏制井筒变形破坏等工程问题,提供了重要理论依据。