四阶微分方程相关论文
本文运用全连续算子的Leray-Schauder不动点定理、Schauder不动点定理、Banach压缩映射原理、上下解方法、锥上的不动点指数理论讨......
近年来,非线性微分方程边值问题在微分方程受到很多学者关注,在许多学科中占据比重逐渐增大.在许多领域中,非线性微分方程不断涌现......
本学位论文运用两项微分方程的振荡理论研究了两端固定支撑的四阶线性边值问题的Green函数的正性和两端简单支撑的四阶线性边值问......
本文利用Z2-指标理论和临界点理论,讨论了一类四阶微分方程共振问题解的多重存在性,这里a>0,f∈C1[0,L]×R,R),μ为特征值问题u(4)+......
本文对两类四阶微分方程的存在性和存在区间进行了研究,以一类常见的两端简单支撑弹性桥梁方程模型为研究主线,简要回顾了近十几年四......
讨论了一类具有混合单调非线性项的四阶微分方程两点边值问题,运用一类混合单调算子的不动点定理及“和型”非线性算子的不动点定......
本文主要以Morse理论为基础,结合非线性泛函分析中的拓扑度理论,不动点指数理论,临界点理论来研究四阶微分方程周期边值问题解的存在......
本文包括三章:第一章为引言,第二章运用临界点理论研究了四阶Hamilton系统T-周期解的存在性和多解性,第三章考虑了一类四阶周期边值......
在这篇文章中,我们主要研究四阶微分方程Neumann边值问题:两个变号解的存在性.论文分三章:第一章为引言;在第二章中,我们介绍了一些预备......
本文讨论了四阶微分方程两点边值问题正解的存在性.这类问题通常用来描述工程中的梁方程. 第1章是本文的绪论部分,对研究的现状......
微分系统的周期解体现了系统的规律性变化,历来受到诸多学者的重视.周期系统不仅在天文学和经济学中,而且在生态学、通讯理论与控......
本文致力于研究具周期边值条件的四阶微分方程正周期解的存在性.通过对两类四阶线性微分方程的格林函数的表达式及其性质的讨论与......
四阶微分方程边值问题因其在工程学、物理学等众多领域中的广泛应用而一直深受追捧.近年来,学者们发现带有周期边值条件的四阶常微......
通过Green函数给出了一对具体的上下解,对一类奇异微分方程边值问题做了研究,得到正解存在的充分必要条件.......
研究了四阶非线性微分方程x(4)(t)+p(t)f(x(t))=0的振动性,对振动因子p(t)变号的情况,给出了两个重要的引理,并得到方程振动的一个......
该文利用锥上的不动点定理,给出四阶超线性奇异p-Laplacian边值问题正解存在的充分必要条件.所给出的条件与非线性项的可积性有关.......
本文给出Strum-Liouville边界条件下的一类四阶奇异超线性微分方程其C2[0,1]正解存在的充分必要条件和C3[0,1]正解存在的充分条件......

