先验误差估计相关论文
在过去的三十多年里,由于现实社会实际生产与实践应用的广泛迫切需要,在天气预报、大型飞机研制、油田勘探与开采等诸多领域,数学......
近年来,关于分数阶微积分特别是分数阶微分方程的研究得到了广泛的关注.将整数阶微积分推广到实数阶或甚至可变阶,其所具有的奇异......
目前,已经形成多种高效数值方法求解偏微分方程最优控制问题,其中有限元方法应用最为广泛,无论是在数值计算还是在理论分析等方面......
本文考虑了二维四阶非线性修正Riemann-Liouville时间分数阶扩散方程的有限元方法.由于四阶空间导数的存在,为了避免高次元的使用,......
分数阶最优控制问题由于其在地下水污染等实际问题中的广泛应用,在理论模型和数值方法方面的研究得到了越来越多的关注.本文主要研......
偏微分方程的最优控制问题广泛应用于电子学、化工、生物等领域。通常情况下,难以求出偏微分方程最优控制问题的解析解,一种合适的......
最优控制问题在控制系统很多领域都具有广泛的应用,已被用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性......
本文讨论了简化摩擦接触问题的一类对称弱超内罚间断Galerkin方法.首先,在能量范数意义下得到最优先验误差估计.进一步,我们推导了......
本文采用分段Hermite插值研究高振荡积分,构造了经典的复化Simpson(C-S)公式及频率拟合的修正的复化Simpson(M-S)公式.先验误差估......
本文主要讨论在龙格库塔间断有限元方法(RKDG)解决可对称化的双曲守恒律方程组,时间离散上采用的是三阶显式的TVD龙格库塔方法,空间......
本文分为两大部分.第一部分第一节介绍了我们所要讨论的可压缩渗流驱动问题,并对方程以及方程中各参数的物理意义进行了说明;第二......
20世纪70年代开始出现一种使用间断逼近空间的间断Galerkin(DG)方法,亦称内罚函数法[10,31]。B.Reviere和M.F.Wheeler[32,33]使用带内......
本文讨论的流体控制问题是一个活跃和卓有成效的研究课题,在石油、化工、航空等工程领域有着广泛应用,并带来了很大的社会和经济效益......
偏微分方程最优控制问题的理论分析和数值方法一直是一个非常活跃的研究领域.虽然关于采用有限元方法分析控制变量受限的最优控制......
本文研究如下抛物型偏微分方程的最优控制问题。(数学公式略)
在传统的有限元方法求解中,最优性条件中的三个方程时空耦合,将遇到......
本文研究并讨论正则长波方程的二阶显式两步混合有限元数值方法.利用混合有限元方法对空间方向进行数值离散,显式两步差分格式进行......
考虑了线性抛物最优控制问题的质量集中P20-P1混合有限元逼近.质量集中法用来处理离散化状态方程,状态和对偶状态采用P20-P1混合元......
对于可压缩流驱动问题,我们采用混合有限元方法求解压力方程,用间断Galerkin方法求解浓度方程,在使用间断Glerkin方法时引入截断算......

