一般线性方法相关论文
泛函微分方程在多种自然学科以及工程技术领域有着广泛的应用.近半个多世纪来,人们对这类方程的数值算法的稳定性与收敛性进行了广......
分数阶微分方程被广泛用于描述具有记忆和遗传性质的复杂动力学问题。但由于分数阶微分算子的非局部结构,只有极少数简单的分数阶......
泛函微分方程(FDEs)在自动控制、生物学、医学、化学、人口学、经济学等众多领域有着广泛应用,其理论和算法研究具有无可置疑的重要性......
设X是实(或复)Hilbert空间,与‖·‖分别为X中的内积与相应的内积范数,考虑在X中有如下形式的一类非线性泛函微分与泛函方程初值问......
隐式中立型积分微分方程是一类泛函积分微分方程,其可以被用来模拟气动弹力学、生态学以及生物工程等科学领域中的一些问题.但隐式......
中立型延迟微分方程在众多科学技术领域有广泛应用,其算法理论的研究具有重要的理论与实际意义。由于问题的复杂性,中立型延迟微分方......
设cdSd维的欧几里得空间,〈·,·〉为其中的内积,‖·‖是由该内积导出的范数.考虑如下形式的非线性中立型延迟积分微分方程初值问题(......
学位
泛函微分方程在多种自然学科以及工程技术领域有着广泛的应用.近半个多世纪来,人们对这类方程的数值算法的稳定性与收敛性进行了广泛......
本文研究一类非线性中立型延迟微分方程一般线性方法的数值稳定性.证明了一般线性方法为(k,p,O)-代数稳定时,在一定的约束条件下,......
一类重要的常微分方程源自用线方法求解非线性双曲型偏微分方程,这类常微分方程的解具有单调性,因此要求数值方法能保持原系统的这......
本文研究Volterra泛函微分方程(k,p,q)-代数稳定的一般线性方法的稳定性,获得了该类方法的一系列新的稳定性结果.......

