Littlewood-Paley算子相关论文
设b是Rn上的局部可积函数,定义Littlewood-Paley算子的交换子gφ,b这里φt(x)=t-n(?)(t>0)且φ满足(i)∫Rnφ(x)dx=0;(ii) |φ(x)|≤(?);(0......
在本文中,作者主要考虑了某些交换子的端点估计.本文共分三章.在第一章中,作者介绍了文章的研究背景和一些常用的符号及空间的定义......
本学位论文主要研究内蕴平方函数、粗糙核Littlewood-Paley算子与粗糙核参数型Littlewood-Paley算子及其交换子在广义分数次Morrey......
本论文的主要目的是研究调和分析中两种不同空间设置下几类算子的有界性.其一,我们专注于研究欧氏空间Rn上由多线性Calderón-Zygm......
本文主要研究Littlewood-Paley算子S?与局部可积函数所生成的多线性交换子S??的有界性问题。首先,确定了多线性Littlewood—Paley交......
本文主要讨论了调和分析中一些算子的弱有界性问题.首先在引言中给出这些算子的背景和相关问题,然后在其后的各章进行分别讨论。 ......
Littlewood-Paley算子相关问题的研究是调和分析中重要的课题之一。本文主要讨论了Littlewood-Paley算子交换子在一些空间中的有界......
函数空间有着悠久的历史,在古典与现代数学中都起着重要作用.这些年,函数空间里面函数的连续性,可微性及P次可积性的研究依旧吸引......
本学位论文主要研究了粗糙核Littlewood-Paley算子在几类函数空间上的加权估计.主要结果如下: 第一章证明了当核函数Ω满足一类......
本文主要研究Littlewood-Paley算子g(ψ)与局部可积函数所生成的多线性交换子g→b(ψ)的有界性问题。 首先,证明了多线性Littlew......
Littlewood-Paley函数的出现是基于向量积分算子有界性估计的应用,即Littlewood-Paley关于所谓平方积分函数的理论。这种形式的函数......
本文分为三章,主要研究了粗糙核Littlewood-Paley算子在几类加权空间上的有界性. 第一章证明了当核函数(此处公式省略)为零阶齐......
本文主要研究Littlewood-Paley算子与某些局部可积函数所生成的多线性交换子的有界性问题。也就是说,我们系统地研究了Littlewood-P......
本文主要研究了Littlewood-Paley算子与局部可积函数所生成的多线性交换子的有界性问题。首先,证明了多线性Littlewood-Paley交换子......
多线性算子首先由Coifman和Meyer在上世纪70年代研究Calderon交换子所引进的。之后他们又进一步研究了高维的多线性奇异积分,仿积,拟......
本文证明了一个与Littlewood-Paley算子有关的不等式,由此导出Littlewood-Paley算子在加权Lorentz空间的有界特征.......
本文考虑的是由Littlewood-Paley算子和BMO函数生成的交换子的端点估计.我们证明了这些交换子是从Herz型Hardy空间HKnq(1-1/q),p(R......
研究了一类方向Hilbert交换及其在某些混合范数空间上的有界性,作为应用之一,证明了带变量核的Littlewood-Paley算子的Lp有界性,这......

