论文部分内容阅读
针对ISG型混合动力汽车能量分配的控制过程,应用传统的模糊控制存在精度不高、自适应能力有限等问题。提出一种粒子群优化模糊控制的方法。在应用传统模糊逻辑建立控制模型基础上,利用粒子群算法对模糊控制中的隶属度函数进行优化,实现了优化的隶属度函数随环境变化以及负载变化实时跟踪模糊控制器的参数变化。仿真结果表明,与Insight控制策略和传统模糊控制策略相比,该方法能够降低电池组SOC变化,同时提高混合动力系统的燃油经济性。试验结果验证使用该方法能够在一定程度上将电池SOC控制在比较合理的范围。
For the control process of energy distribution of ISG hybrid vehicles, the application of traditional fuzzy control has the problems of low accuracy and limited adaptive capacity. A method of particle swarm optimization fuzzy control is proposed. Based on the application of the traditional fuzzy logic control model, the particle swarm optimization algorithm is used to optimize the membership function of the fuzzy control, which realizes the change of parameters of the fuzzy controller in real time with the changes of the membership functions and the load changes. The simulation results show that compared with the Insight control strategy and the traditional fuzzy control strategy, this method can reduce the battery SOC variation and improve the fuel economy of the hybrid system. Test results verify that using this method to a certain extent, the battery SOC control in a more reasonable range.