论文部分内容阅读
本文推导了n元系(n≥3)的一个热力学方程.当n元系在区间(ψ_0~o,ψ_0)内遵循型或Turkdogan型等(?)_0规则时,这个方程有特解。因而,这两类型非理想n元系的性质可仅由二元数据计算而得。例如,当ψ是体积、热容或焓时,(?)_o相等的(n-1)种二元系之间混合成遵循型等(?)_0规则的n元系时,△ψ=0;(n-1)种二元系之间混合成遵循Turkdogan型等(?)_0规则的n元系时,△ψ=(?)K_(ψj)V_j (2≤j≤n-1)。又如,当ψ是Gibbs自由能时,遵循型等μ_0规则的n元系中,各组分K的活度都可以表示为Raoult型方程: αk/αk(0)=X_k (1≤K≤n-1)遵循Turkdogan型等μ_0规则的n元系中,组分1和各组分j的活度可以分别表示为Raoult型方程: α_1/α_1(0)=X_1和Henry型方程: α_j=K_j~*X_j
This paper deduces a thermodynamic equation of n elemental system (n≥3). This equation has a special solution when the n elemental system is in the interval (ψ_0 ~ o, ψ_0) or Turkdogan type (?) _0 rule. Thus, the properties of these two types of non-ideal n-grams can be calculated from binary data only. For example, when ψ is volume, heat capacity or enthalpy, (n-1) binary systems of (?) _o are mixed into an n-system of normal (n-1) bounded by the n-element system that complies with the Turkdogan type (?) _0 rule, ψ ψ = (?) K_ (ψj) V_j (2≤j≤n-1). For another example, when ψ is the Gibbs free energy, the activity of each component K can be expressed as a Raoult type equation in the n-type system following the type μ_0 rule: αk / αk (0) = X_k (1≤K≤ n-1) According to the Turkdogan-type μ_0 regular n-element system, the activity of component 1 and each component j can be expressed as Raoult type equation respectively: α_1 / α_1 (0) = X_1 and Henry type equation: α_j = K_j ~ * X_j