几类非线性波方程行波解的动力学行为研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:qu123qu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非线性波方程是描述自然现象的一类重要数学模型,也是非线性数学物理特别是孤立子理论最前沿的研究课题之一.通过对非线性波方程的求解和定性分析的研究,有助于人们弄清系统在非线性情况下的运动变化规律,合理解释相关的自然现象,更加深刻地描述系统的本质特征,推动相关学科如物理学、力学、应用数学以及工程技术的发展.  随着非线性科学的发展,许多物理、化学和生命科学模型都可以转化为非线性方程,如非线性常微分方程、偏微分方程等.非线性方程的求解已经成为非线性科学领域的一个重要研究课题.  本文主要利用积分因子方法和动力系统分支理论研究了几类非线性波方程的行波解及性质,并进一步研究了一类奇异扰动非线性波方程孤立波解的存在性.全文共有六章组成.  第一章是绪论,对非线性波方程的发展历史、研究现状、研究意义进行了叙述.  第二章是预备知识,主要介绍了与本文相关的一些基础理论和方法.  在第三章,我们用积分因子方法研究了两类非线性波方程,广义Camassa-Holm方程和广义G-P程,求出了它们的孤立尖波,孤子类解和周期解.  在第四章,我们利用动力系统分支理论研究了一类广义双sinh-Gordon方程和一类(N+1)维sine-cosine-Gordon方程,讨论了它们的相图及其分支,给出了明确的参数条件以及参数条件下的相图.并给出了行波解的精确参数表示.  在第五章,我们应用几何奇异扰动定理研究了一类奇异非线性波方程,对奇异扰动mKdV方程孤立波解的存在性进行了证明.  最后,就全文进行了总结,就研究中还没有彻底解决的问题进行了说明,并提出了有待进一步研究的问题。
其他文献
自两千多年前,Euclid算法出现以来,人们便致力于通过符号变换用构造性方法来求解方程或方程组.19世纪中期,在代数研究中产生了公理化方法,这一方法在算法的构造性上给抽象的
以往的投资者在作投资决策时,通常是采用一个"两步走"的方法:即先用Markowitz的均值-方差模型确定投资到各证券的份额.在这些份额确定后,再确定对各个国家货币进行套期保值的
该文定义了强紧映射,给出了度量空间的强紧象的刻画并讨论了与度量空间的强紧象相关的问题.证明了度量空间的开强紧象仍是度量空间.meso-紧的Moore空间是可度量的.
遗传算法是一种基于遗传和自然进化法则的模拟进行算法.该文研究的主要内容是应用遗传算法解决遥感图象的数字分类问题.论文分三部分.第一章从介绍遗传算法入手,详细分析了遗
汉语语音处理是当前重要的研究领域之一.其中汉语语音合成技术在各个领域中得到了广泛的应用,受到科研工作者的关注.该论文主要研究汉语语音波形编码合成技术.分别采用了两种
m阶截断-B样条小波是一簇具有m阶消失矩性质的半正交小波.该文讨论在有限区间上利用m阶截断B-样条小波对信号进行分解与重构的具体算法.特别地,该文给出了对一些信号进行尺度
该文运用数学方法讨论了生物学中的两种实际问题,其一是神经元的动态问题;其二是群落种群的长期动态问题.全文共分两部分.在第一部分,运用奇摄动理论的几何方法,讨论了一对神
时齐扩散过程在金融领域具有重要作用,它被广泛应用于描述基础资产变量的随机波动。本文主要研究了基于离散观察值样本的时齐扩散过程漂移系数和扩散系数的非参数估计问题,Stan
该文研究随机需求下,单层多产品、有资源能力限制的生产批量问题.多种产品在有限的离散时段进行生产,每种产品在第一时段上生产都需要生产准备时间和生产准备费用.生产过程中