有界对称域相关论文
本文的研究属于多复变函数论中有界拟凸域上的复几何分析的范畴.我们所研究的域是华罗庚域,主要讨论Bcrgman核函数、Kaihler-Einstci......
对于函数空间乘子理论的研究已经有很长的历史,国内外许多著名学者都作过一些卓有成效的工作。Hardy-Littlewood 结论对复分析三个......
本研究讨论了复分析中的乘子理论。共分为四章:第一章,给出研究乘子的目的和意义、乘子的国内外研究现状、本文的主要内容和结构。第......
解析函数空间通常研究的是函数的泛函性质和分析性质。泛函性质研究解析函数空间的整体性质,例如解析函数空间的对偶空间;分析性质则......
乘子理论对研究函数空间算子理论和函数空间性质有着重要的作用。本文主要讨论了C中有界对称域上n A空间和pA空间的函数性质以及乘......
这篇文章分为4章。第1章,我们给出了乘子理论的国内外研究现状和分数次导数理论的国内外研究现状,并给出了我们在第二章和第三章中用......
本文给出加权 Plancherel 公式与 Hermite 对称空间上的齐性线从上 Plancherel公式的关系,由此导出一般有界对称域上的加权 Planch......
在有界对称域上引入两类蛋型域,得到其上Bergman核函数的显表达式。作为辅助工具,利用著名的Selberg积分,计算有界对称域上一般范......
研究以不可约有界对称域Ω为底空间的一类Hartogs域Ω上的K(a)ler-Einstein度量,这种域称之为Cartan-Hartogs域,是华罗庚域的一种,......
研究以不可约有界对称域Ω为底空间的一类Hartogs域Ω上的K(a)ler-Einstein度量,这种域称之为Cartan-Hartogs域,是华罗庚域的一种,......

