多孤子解相关论文
考虑到介质的不均匀性,一种广义变系数Kadomtsev-Petviashvili(vcKP)方程被提出,它可以用来模拟流体力学和等离子体物理中的非线性......
为了描述两地或者多地关联事件的情况如量子纠缠现象,Alice-Bob系统应运而生,因为这些事件不是相邻的甚至是相距遥远的,因此Alice-......
随着非线性科学的发展,出现了大量的非线性发展方程,这些方程在不同的物理背景下起着重要的作用。其中,非线性薛定谔方程的孤子解......
本文研究了DP方程的行波解。首先利用齐次平衡法,借助Riccati方程和mathematic软件,研究了DP方程以及带有色散项的DP方程的精确行波......
双线性变换方法是由日本数学家AHirota引入的一种求解非线性偏微分方程的直接方法,其基本思想是通过变换将一个非线性偏微分方程改......
随着科学的发展,非线性现象出现在自然科学与工程技术等许多领域,对应的非线性模型也变得复杂多样,因此描述这些模型的非线性偏微分方......
根据色散长波方程的可积性,首先借助符号计算构造出该方程的Lax对,接着构建一个包含多参数的Darboux变换,通过应用Darboux变换,得......
该文利用Hirota双线性形式和广义三波测试法构建了(3+1)维Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解.其中有一些完全......
期刊
利用标准Painleve截断分析法,将Konopelchenko-Dubrovsky(KD)方程约化为两个线性偏微分方程和一个双线性偏微分方程,建立起相应的B......
利用Hirota双线性变换法给出两类扩展KP方程的双线性形式、多孤子解和B(a)cklund变换,并证明了解的非线性叠加公式.......
对齐次平衡法的一些关键步骤进行拓宽,获得了一系列非线性方程的多孤子解,使得对非线性方程的多孤子解的求解方法更加直接,且许多......
Hirota双线性方法是一种非常有效的直接方法,使得求解非线性演化方程的多孤子解转化为代数求解.将这一方法进一步拓展,求得了(2+1)......

