Richardson外推法相关论文
在偏微分方程中,抛物型方程是一类含相关物理背景的偏微分方程.抛物型偏微分方程在研究热传导过程、部分扩散现象及电磁场传输等很......
Schrodinger方程是现代科学中具有普遍意义的重要方程之一,它在非线性光学、量子力学、等离子物理、流体力学中有着广泛的应用.目......
对椭圆型方程的数值求解方法的研究已有很多,高精度紧致差分格式由于具有精度高、使用网格节点数少和边界条件易于处理等特点而倍受......
高精度紧致差分格式具有使用网格基架点少、精度高、稳定性好且使求解问题的边界处理简单等优点,在偏微分方程数值解和计算流体力学......
对流扩散方程是一类可以用来描述河流污染、大气污染、污染物浓度,流体流动以及热传导等众多物理现象的运动方程.关于此类方程的有......
有限体积方法作为数值求解微分方程的一类重要方法,它综合了有限差分法和有限元法的优点,兼有有限差分法的简单性和有限元法的精确性......
基于Richardson外推法提出了一种求解Schr(o)dinger方程的高阶紧致差分方法.该方法首先利用二阶微商的四阶精度紧致差分逼近公式对......
基于Richardson外推法提出了数值求解三维泊松方程的高阶紧致差分方法.方法通过利用四阶和六阶紧致差分格式,分别在细网格和粗网格......

