Hochschild上同调群相关论文
我们将代数Morse理论应用于三个生成元的中国幺半群代数,计算了它的双边Anick分解并利用此分解计算了中国幺半群代数的中心与一阶H......
有限维代数的Hochschild上同调群是由Hochschild1945年引进,并经过Cartan Eilenberg整理,它在数学的若干分支中均有重要作用。如代数......
本文主要研究了一类Kadison-Singer代数的性质以及其上同调群的问题. 具体地,设L是子空间格,在M2n(C)中,此处为公式,其中A为任意n阶......
代数的Hochschild上同调群是由Hochschild在1945年引入,经Cartan和Eilenberg发展并逐步完善的同调代数分支.有限维代数的Hochschild(......
Koszul代数近年来已得到广泛而深入的研究.它在表示理论的研究中扮演着重要的角色.Lofwall、Auslander、Beilinson等人的成果表明Kos......
Hochschild上同调群能够给出代数的重要不变量。本文研究了斜群代数Hochschild上同调群的约化,参照群代数中Hochschild上同调群已有......
Gelfand-Ponomarev代数∧=k/(xy,yx,x8,yt),8,t>1,是一类十分重要的特殊双列代数,其中k为代数闭域.它是第一类能够对其不可分解模......
有限维代数的Hochschild上同调群由Hochschild于1945年提出,并经过Carten和Eilenberg整理.其在数学许多分支中起着重要的作用,如代数......
本文系统研究了双参数量子群的某些性质和特征零域上广义Witt型李代数的量子化. 本文首先研究限制B型和G型双参数量子群的单模......
设Λ=k(x,y>/(xy,yx,x5,yt),s,t>l为代数闭域k上的Gelfand-Ponamarev代数.基于Bardzell对零关系代数的极小投射双模分解的细致分析......

