Hirota双线性相关论文
在各个领域中都存在着大量缤纷复杂非线性现象,研究者们通常建立非线性模型,借助数学模型来研究各领域中出现的非线性现象。非线性......
在非线性系统发展的过程中,Lump解和怪波的研究越来越引起人们的广泛关注。Lump解与怪波特殊的结构以及潜在的破坏性是人们关注的......
在非线性演化方程的研究过程中,寻找方程的精确解是重要的课题之一。相比于众多已有的其他求解方法,Wronskian技巧结合Hirota双线性......
方程的求解是研究非线性偏微分方程的重点,同样也是孤子理论研究的热点内容.本文重点研究了三类可积方程:变系数强迫KdV方程;变系数......
本文主要工作包括两个部分:第一部分是Wronskian技巧在若干个孤子方程中的应用.第二部分给出了平衡法和不变子空间法在孤子方程中......
在海洋工程,量子力学,流体力学,大气科学,金融学等领域有许多现象都需要通过孤子模型来刻画,如海洋大气中的阻塞现象(mKdV模型),光......
求解非线性发展方程的精确解和寻求新的可积耦合系统是非线性方程研究中的两个重要课题.目前,专家学者们建立和发展了许多有效的方......

