论文部分内容阅读
支持向量机的最大特点是通过有限的训练集样本得到小的误差,保证对独立的测试集保持小的误差,即在先验知识较少的条件下仍然保持良好的推广能力。增量学习是弥补先验知识不足的有效途径。通过对向量机初始训练、增量学习、特征解析等一系列流程的描述,提出了一种小样本下应用支持向量机技术创建的具有增量学习能力的入侵检测系统。