论文部分内容阅读
提出一种新的递归T-S模型(Takagi-Sugeno模型)的模糊神经网络结构(TSFRNN),利用动态BP(DBP)算法来学习训练神经网络的参数,通过与通常的多层前馈神经网络结构的T-S模糊神经网络(TSFNN)的对比仿真实验,说明在非线性系统建模方面TSFRNN比TSFNN更加优越。