论文部分内容阅读
在以前的工作中,我们利用蒙特卡洛和分子动力学模拟计算了具有互穿性结构及混合配体的金属-有机骨架材料(metal-organic frameworks,MOFs)分离CH4/H2的吸附选择性及扩散选择性.研究了材料的互穿结构及混合配体对材料用于分离CH4/H2性能的影响.在本工作中,我们将以前的工作进行了扩展,详细研究了材料的互穿结构及混合配体对材料用于分离CO2/CH4,CO2/N2和CO2/H2等含有CO2的气体混合物性能的影响.此外,为了进一步阐明材料的结构对于其分离性能的影响,我们亦研究了材料用于分离CH4/H2及CH4/N2.从我们的结果可以看出,相比无互穿结构的MOFs材料,具有互穿结构的MOFs材料对所研究的所有混合气体的渗透选择性明显提高.这是因为具有互穿结构的MOFs材料对混合气体的吸附选择性明显高于无互穿结构的MOFs材料.结果表明,如果将材料作为膜用于气体混合物分离,使材料产生互穿结构是提高材料分离性能的一个很好的策略.
In previous work, we calculated the adsorption selectivity of CH4 / H2 using metal-organic frameworks (MOFs) with Monte-Carlo and molecular dynamics simulations Diffusion selectivity.The interpenetrating structure of materials and the effect of mixed ligands on the performance of materials for the separation of CH4 / H2 have been studied.In this work, we extend the previous work and study the interpenetrating structure of materials and In order to further elucidate the effect of material structure on the separation performance of CO2 / CH4, CO2 / N2 and CO2 / H2, we also studied the influence of material on the performance of material For the separation of CH4 / H2 and CH4 / N2. From our results, it can be seen that the MOFs with interpenetrating structure exhibit significantly higher permeation selectivity for all mixed gases studied compared to MOFs without interpenetrating structure. Because the MOFs with interpenetrating structure have much higher selectivity for the mixed gases than the non-interpenetrating MOFs.The results show that if the material is used as a membrane for the separation of the gas mixture, the material is interpenetrated Structure is a good strategy to improve the separation properties of the material.