论文部分内容阅读
我们在数字计算过程中,为获得比较精确的数据,必须减少计算误差。要减少计算误差,就有一个对所要求精确程度之外的数字如何取舍即修约的问题。一般,人们习惯于4舍5入的简单修约方法。在这种方法中,1、2、3、4四个数均被舍去,而5、6、7、8、9五个数均被进上,由于舍与进的机会之比为4∶5,进的机会多,故用4舍5入法修约算出的平均值偏差较大。为了减少这种偏差,在标准化工作导则编写标准的一般规定(GB1·1—87)附录 C
We in the numerical calculation process, in order to obtain more accurate data, you must reduce the calculation error. To reduce the calculation error, there is a question of how to choose or revise the figures beyond the required precision. In general, people are accustomed to the simple rounding method of 4 homes. In this method, 1, 2, 3, 4 four numbers are rounded off, while 5, 6, 7, 8, 9 five numbers are entered, due to rounding the opportunity to enter the ratio of 4: 5, into the many opportunities, it uses 4 homes rounded into the law 5 to calculate the average deviation greater. In order to reduce this discrepancy, in the standardization guidelines for the preparation of the standard general provisions (GB1 · 1-87) Appendix C