以学材设计为抓手,引导学生走出认知误区

来源 :小学教学参考(数学) | 被引量 : 0次 | 上传用户:xuhuohua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  [摘 要]如果对数学知识的原有认知偏离了科学概念,学生就易形成认知误区。以“三角形的面积”一课为例,从学情检测、教材对比等角度入手,帮助学生分析原有认知和最终认知之间的差异,进而寻求最利于学生建构认知体系的学习素材来引导学生走出认知误区。
  [关键词]认知误区;学材设计;三角形的面积
  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2018)35-0031-02
  学生在日常生活中逐步形成的前概念与科学的概念往往大相迳庭,由此就产生了认知误区。作为教师,要在学生的认知基础上,选择有效的学习材料,对学生进行纠正和引导。笔者通过研究发现,学习材料的选择和设计是一个非常重要的环节。因此,教师应找到学生出现认知误区的原因,并以学材設计为抓手引导学生走出认知误区。下面以“三角形的面积”的教学为例进行探讨。
  一、典型学材的设计误区及缺陷分析
  典型的学材设计1:给学生提供3个三角形。
  教师给学生提供3个三角形,让学生结合原有的经验进行操作,通过这个学材的使用,把学生的思维从“把一个三角形沿高剪开来拼”调正到“用两个完全相同的三角形来拼”,学生的思维也能从只会转化等腰三角形调正为能够转化任意三角形。但此学材设计存在的误区也是很明显的,当学生面对三角形无法转化成功的情况时,教师让学生从“三角形可以分为两个完全一样的三角形”这个原有认知调正到“两个完全一样的三角形,才能拼成平行四边形”,过程太过生硬,学生无法调动原有的拼接经验,不能独立寻找到“倍拼法”。在这个过程中,教师的探究方式又比较单一,学生的探究主动性没有被充分调动起来。
  典型的学材设计2:给学生提供以方格图为背景的直角、锐角、钝角三角形图形各一个(如图1)。
  这个学材的设计,使学生能够在方格图中用“中位线割补法”完成“倍拼”的构想,将三角形转化成已学过的图形,因此推理出三角形的面积计算公式。然而,这一学材设计由于是从直角三角形出发到锐角三角形再到钝角三角形的尝试探究,整个过程比较繁杂冗长,探究的背景也始终都是在方格图中,导致学生在面对没有任何数据背景的任意三角形,需要测量数据时,就束手无策。
  典型的学材设计3:给学生提供以平行四边形为背景的一个直角三角形[ABE](如图2)。
  这个学材设计是借助平行四边形和直角三角形之间的特殊关系,让学生完成“加倍”的认知,从计算平行四边形中直角三角形的面积出发去推导三角形的面积计算公式,从而逐步完成任意三角形的面积计算公式的推导。这样使用学材设计的推导方式比较单一。
  二、学材设计的调正策略及设计意图分析
  学材设计片段一:
  先给学生出示直角三角形和方格图。直接追问学生怎么算三角形的面积,需要什么数据条件。根据学生的反馈,再给学生提供一整张以方格图为背景的A4纸,纸上印有3个三角形,让学生有创作的空间。
  [设计意图]这样设计学材,是基于两个方面的考虑:其一,直接向学生提出研究的内容,大部分学生在看教材、做作业的过程中,发现了公式,并能够运用公式来进行面积计算,学生由此发现这节课并不只是研究怎么算,而是重点研究为什么这样算,这给本堂课注入了核心的思考力。其二,给学生提供方格图,能够让学生对照具体数据,研究其中的数理,这让学生面对底和高这些抽象的名称时更容易说理和分析。
  学材设计片段二:
  提问:“三角形的面积公式中为什么要除以2?”学生展开讨论,有的认为从三角形的中位线割开,通过旋转拼成一个长方形,这个长方形的长与原来的三角形的底一样,但它的宽是原来三角形的一半,因此高需要除以2。也有学生认为将三角形转化成长方形之后,底边只有原来的一半,所以底边要除以2。在这个环节中,笔者向学生直观呈现中位线割补的动态过程,让学生直观看到怎么样切割才能够拼成平行四边形或是长方形。(如图3)
  学生由此认识到,将三角形转化成平行四边形或者长方形,需要沿着三角形高的中点到斜边的中点或从底的中点到斜边的中点进行分割,将高割掉一半或者是将底边割掉一半来拼成学过的平行四边形或者长方形。
  [设计意图]这一学材是根据学生的经验来进行设计的,此设计以方格图为背景,使学生能够利用割补转化的方法将单个直角三角形直接分割转化为已学过的平行四边形或是长方形,促使学生轻松理解三角形面积公式的本质内涵。
  学材设计片段三:
  给学生直观呈现一个平行四边形,已知平行四边形的面积是6平方厘米,要求学生观察思考:能否从平行四边形中看到三角形?学生认为,平行四边形的对角线能将其等分成两个三角形,三角形的面积是平行四边形面积的一半。紧接着,又给学生一个“单身”的三角形,要求学生找到“单身”三角形的“伙伴”——平行四边形(如图4)。
  [设计意图]设计这样的学材,有两个方面的目的,一是强化学生的直观感知。先让学生将一个平行四边形分割成两个三角形,然后再从单个的三角形去想象拼成的平行四边形,这样配合动态直观的感知过程,能够让学生进一步内化数学知识。二是通过故事化的语言,让学生牢牢记住三角形的“好伙伴”是平行四边形。在后续的练习中,学生加深了对“÷2”的印象,感受到“底乘高”算的是平行四边形的面积,要“÷2”才是三角形的面积。
  综上可知,教师要以学材设计为抓手,调正原有认知和最终认知之间的差异。只有这样,才能够让学生经历从不完整的原有认知到构建完整认知的过程。这样的过程正是学生数学能力发展的过程,也是提升学生数学思维能力和自主探究能力的根本所在。
  (责编 黄春香)
其他文献
[摘 要]新课程标准提倡(鼓励)算法多样化。这就要求教师充分尊重学生的个性想法,鼓励学生独立思考,允许学生从不同的角度、运用不同的方法解决问题。算法多样化并不是要求学生掌握各种算法,也不等于方法的全面化,更不是鼓励学生除了自己的算法之外,对其他的算法置之不理。在学生通过交流说出多种算法后,教师应及时引导学生对各种算法进行归纳整理及分析比较后不断完善或改進自己的方法。在提倡算法多样化的基础上应发展学
[摘 要]“获得数学基本活动经验”是基于“动态的数学观”,是一种充满情感、富于思考的经历和探索活动。以“搭配的规律”教学为例,从唤醒学生的生活经验、引导小组合作探究、进行实践活动等三个方面,论述如何帮助学生积累数学基本活动经验的教学策略。  [关键词]数学基本活动经验;教学思考;搭配的规律  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2017)08-004
[摘 要]课堂教学中,教师要立足于学生的需求,采用易于学生理解和接受的教学方式,帮助学生更好地完成知识的建构。从学生的学习经验开展教学,就能充分暴露学生的学习起点,激发学生的学习热情,从而有效推动学生的生长学习。  [关键词]认识负数;经验;生长;理解  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2017)08-0009-02  “认识负数”是北师大版四年
[摘 要]学生空间观念不强,不能很好理解立体图形的特点,动手操作做一个圆柱可以使学生的感知、记忆、想象、思维等功能进入最佳状态。经过动手操作,学生也经历了从平面图形到立体图形的认知过程,有利于学生建立空间观念,再通过相互之间的交流,学生更是获得了“意外”的收获。  [关键词]动手操作 感悟 发现  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)32-
[摘 要]“教无定法,贵在得法。”教学是一门艺术,教师要充分发挥自己的教学智慧,勇于创新,在实践中摸索,使课堂教学因一点小变动,获得大功效。  [关键词]小学数学 教学程序 思维方式 实践应用 变动 功效  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2016)08-034  对“三角形的面积”一课,我多年来都是按照教材中提供的思路开展教学,但始终有一个问题
[摘 要]数学对于学生来说不应该是冰冷不可亲近的,只要教师走出“生产教学”的怪圈,改变“重教轻学”的现状,突出基于学生经验和意义理解的数学教学,就能将学生从被动的状态下解放出来,使学生在主动寻求和积极构建中完成对数学赋予个人的意义,像苗木那样完成“生长式”的自我创生。在生长式学习的过程中,数学是可理解、可亲近的,学生是会思考、会创造的。  [关键词]生长学习;公顷和平方千米;思考;建构  [中图分
[摘 要]苏教版教材从三年级起新增了“解决问题的策略”,但教师不能让学生到了三年级才接触这类问题。从数学模型的建立、数学语言的训练和回顾反思等教学方式入手,阐述教学解决问题的策略之前在启蒙教学、数量关系的原始积累、基本数学思考方法的提前渗透等方面的具体做法。  [关键词]启蒙教学;原始积累;提前渗透;建立模型;语言训练  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9
[摘 要]从学生平时的课堂表现、课后作业的反馈中不难发现,学生的数学思考能力存在一些问题。教师要对教材中的思考题进行合理的应用,重视思考题,有效利用思考题,从而拓宽学生的知识面,发展学生的数学思考力。  [关键词]思考题 数学思考力 教材应用 方法  [中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2016)26-010  很多教师在从事人教版新教材的教学中都会
根据新课标的理念,教师与学生共同参与的课堂,应该是一个学生主动建构的过程,也是基于数学教材、教师、学生三方互动吸收的过程。在这个过程中,教师的身份就是紧扣教学主线,为学生的思维搭桥,连接教材和学生的“学习”,构建灵活的课堂探究模式。那么如何为学生成功搭建思维桥梁呢?  一、抓住教材线索,重建教学模式,激发学习动力  由于学生年龄小,缺乏数学经验,认知和接受数学知识的能力存在着个体差异,教师要在教学
[摘 要]随着信息与通讯技术快速发展,“互联网 教育”已成为当今教育发展的必然趋势。翻转课堂、慕课、微课等新颖教学形式大量运用到教学实践中,并在大学、中学教学中取得良好成果。小学阶段的“图形与几何”知识版块,内容较为抽象,小学生常常因操作少、想象能力差,导致认知结构脱节、认知方式异化,产生厌学、畏学情绪。针对这一难点,对“微课”在小学数学图形与几何教学中有效应用做了一定的研究,并实施一年,收到良好