论文部分内容阅读
同学们在学习反比例函数的时候可以发现,反比例函数y=k/x的本质特征是两个变量y与x的乘积是一个常数k。由此不难得出反比例函数的一个重要性质:若A点是反比例函数y=k/x图像上的任意一点,且AB垂直于x轴,垂足为B,AC垂直于y轴,垂足为C,则矩形面积S_(ABOC)=|K|(如图所示)。例1如图所示,P是反比例函数y=k/x的图像上的一点,由P分别向x轴y轴引垂线,得阴影部分(矩形)的面积为3,则这个反比例函数的解析式是______。
When students learn inverse proportionality functions, it can be found that the intrinsic characteristic of the anti-proportional function y=k/x is that the product of the two variables y and x is a constant k. It is not difficult to get an important property of the inverse proportional function: if point A is an inverse proportional function y=k/x at any point in the image, and AB is perpendicular to the x axis, the foot is B, AC is perpendicular to the y axis, and the foot is C, then the rectangular area S_(ABOC)=|K| (as shown). Example 1 As shown in the figure, P is a point on the image of the inverse proportional function y=k/x, where P is perpendicular to the y-axis of the x-axis, and the area of the shadow (rectangular) is 3, then this inverse-proportional function The analytical formula is ______.