【摘 要】
:
An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature, molten salt thermal storage systems. The microstructure of the bonding interfaces w
【机 构】
:
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shan
【出 处】
:
International Journal of Minerals, Metallurgy and Materials
论文部分内容阅读
An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature, molten salt thermal storage systems. The microstructure of the bonding interfaces were extensively investigated by scanning electron microscopy, energy dispersive spectrometry, and an electron probe microanalyzer. The bonding interface possessed a periodic, wavy morphology and was adorned by peninsula- or island-like transition zones. At higher magnification, a matrix recrystallization region, fine grain region, columnar grain region, equiaxed grain region, and shrinkage porosity were observed in the transition zones and surrounding area. Electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone was less than the substrate. Strain concentration occurred at the interface and the solidification defects in the transition zone. The dislocation substructure in 316H near the interface was characterized by electron channeling contrast imaging. A dislocation network was formed in the grains of 316H. The microhardness decreased as the distance from the welding interface increased and the lowest hardness was inside the transition zone.
其他文献
Composite electrodes prepared by cation exchange resins and activated carbon (AC) were used to adsorb V(Ⅳ) in capacitive deion-ization (CDI). The electrode made of middle resin size (D860/AC M) had the largest specific surface area and mesoporous content
In this work, sodium dicyanamide (SD) was used as a leaching reagent for gold recovery, and the effects of the SD dosage and solution pH on the gold-leaching performance were investigated. A gold recovery of 34.8% was obtained when SD was used as the sole
All-solid-state Li-ion batteries (ASSLIBs) have been widely studied to achieve Li-ion batteries (LIBs) with high safety and energy density. Recent reviews and experimental papers have focused on methods that improve the ionic conductivity, stabilize the e
The microstructural evolution and performance of diamond/Al composites during thermal cycling has rarely been investigated. In the present work, the thermal stability of diamond/Al composites during thermal cycling for up to 200 cycles was explored. Speci
Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health. In this study, inorganic aluminosilicate coatings prepared by combining metakaolin, silica fume, NaOH, and H2O were applied to
Silicon (Si) is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium (Li)-ion batteries (LIBs) because it has a high theoretical gravimetric Li storage capacity, relatively low lithiat
In the past few years, the all-solid lithium battery has attracted worldwide attentions, the ionic conductivity of some all-solid lithium-ion batteries has reached 10−3–10−2 S/cm, indicating that the transport of lithium ions in solid electrolytes is no l
In order to study the effect of continuous casting process parameters on the shape of slab solidification end under non-uniform cooling, a solidification model of a continuous-cast slab with non-uniform cooling condition was established with ProCAST softw
The silicon-based material exhibits a high theoretical specific capacity and is one of the best anode for the next generation of ad-vanced lithium-ion batteries (LIBs). However, it is difficult for the silicon-based anode to form a stable solid-state inte
Anion-immobilized solid composite electrolytes (SCEs) are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries (ASSLMBs). Herein, a novel SCEs based on metal-organic frameworks (MOFs, UiO-66-NH2) and super