论文部分内容阅读
针对支持向量机模型中的参数难以确定的状况,提出了遗传支持向量机方法,即利用遗传算法来搜索支持向量机与核函数的参数,避免了人为选择参数的盲目性,同时提高了支持向量机的推广预测能力,并将该方法应用于膨胀土胀缩等级的判别分类问题。考虑影响膨胀土判别的重要因素,选用液限、胀缩总率、塑性指数、天然含水量和自由膨胀率5个指标作为模型的判别因子,以4类膨胀土胀缩等级作为相应的输出,以膨胀土实测数据作为学习样本进行训练,建立相应分类函数对待判样本进行分类。研究结果表明:遗传支持向量机模型分类性能良好,预测精度高,是膨胀土