【摘 要】
:
仪器、周围环境和人为操作等往往会造成点云中包含大量的噪声,导致模型回归精度低等问题。RANSAC算法凭借其简单实现、稳健的优势广泛应用于解决模型回归的问题。但是,针对不同的场景,RANSAC算法需要不断地调整参数来估计最优模型解。本文考虑到RANSAC及其现有改进算法的不足,以及内群点与噪声之间往往存在密度分布差异性,首先利用密度加权导向采样的方式优化初始假设模型,然后提出了一种空间密度函数以用于
【基金项目】
:
国家重点研发计划(2020YFC1523003,2020YFC1522703),国家自然科学基金(41571437),深圳市空间信息智能感知与服务重点实验室开放基金