论文部分内容阅读
Genotype-by-environment interactions (GxE) are commonly observed for quantitative traits. In the present study, a doubled haploid (DH) population and its genetic linkage map were used to comparatively study QTLs in salt stress and nonstress environments. A total of 24 QTLs were detected for five agronomic traits, which were distributed on all the chromosomes except 9 and 11. Under the salt stress, nine (37.5%) QTLs were detected, including one for 1 000-grain weight (GW), two for heading date (HD), one for plant height (PH), two for grains per panicle (GPP), and three for effective tillers (ET), while in the nonstress environment, 17 QTLs (70.8%) were detected, including five for GW, six for HD, three for PH, two for GPP, and one for ET. Two QTLs (8.3%) were consistently detected in both environments. One was identified on chromosome 4 for HD and the other on Chr.6 for GPP. Furthermore, three regions carrying multiple QTLs were identified on chromosomes 1, 4 and 8 respectively. For example, on chromosome
Genotype-by-environment interactions (GxE) are commonly observed for quantitative traits. In the present study, a double haploid (DH) population and its genetic linkage map were used to comparatively study QTLs in salt stress and nonstress environments. A total of 24 QTLs were detected for five agronomic traits, which were distributed on all the chromosomes except 9 and 11. Under the salt stress, nine (37.5%) QTLs were detected, including one for 1000-grain weight (GW), two for heading date (HD), one for plant height (PH), two for grains per panicle (GPP), and three for effective tillers (ET), while in the nonstress environment, 17 QTLs Two for HD, three for PH, two for GPP, and one for ET. Two QTLs (8.3%) were consistently detected in both environments. One was identified on chromosome 4 for HD and the other on Chr.6 for GPP. Furthermore, three regions carrying multiple QTLs were identified on chromosomes 1, 4 and 8 respectively. For exa mple, on chromosome