论文部分内容阅读
在K均值算法中,对于随机的初始值选取可能会导致不同的聚类结果,甚至存在着无解的情况;还有该算法是基于梯度下降的算法,因此不可避免地常常陷入局部极优。针对K均值聚类算法存在的缺点,提出了一种新的聚类算法——基于粒子群的K均值聚类算法,理论分析和实验表明该算法有较好的全局收敛性,能有效地克服传统的K均值算法易陷入局部极小值的缺点,采用改进后聚类算法对电信客户数据进行聚类分析,得到具有不同特征的客户群组,聚类结果分析更合理清晰,更便于对不同群组采取不同的经营策略,为管理者提供了合理的决策支持。