论文部分内容阅读
单一技术无法有效解决多类分类问题。为此,提出一种基于一对多支持向量机(SVM)的基本概率分配输出方法,并与置信最大熵模型的D-S证据组合方法结合,给出基于SVM概率输出和证据理论的多分类模型。在3种UCI标准数据集上的仿真结果表明,该方法的分类精度优于传统的一对多和一对一硬输出方法,是一种有效的多类分类方法。