Levy噪声和自突触作用下神经元系统中反随机共振现象研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:donnybaby
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
神经元是神经系统内活动的基本单位,对神经系统信息处理和传递有着至关重要的作用。噪声是神经系统中最大的随机因素,当神经元受到周围噪声的影响后,神经元的放电模式也会发生变化。目前,有大量关于噪声诱导的随机共振和相干共振的研究,本文研究的是与前者不同的噪声对神经元放电的抑制效果,也就是反随机共振。基于Hodgkin-Huxley(HH)神经元模型,深入研究了噪声及自突触对神经元和神经网络放电活动的影响,主要内容和结论如下,
  1.系统研究了由Levy噪声引起的单神经元反随机共振现象。研究发现,在Levy噪声的影响下,Levy噪声的特征指数和尺度参数可以使平均放电率达到最小值。结果表明,当输入电流强度达到临界阈值时,Levy噪声会引起反随机共振。此外,为了进一步证明Levy噪声可以产生反随机共振,本文还利用峰峰间期直方图研究了电压放电模式。最后,发现随着Levy噪声特征指数和尺度参数的增加,峰峰间期的总个数先减小后增大,这意味着反随机共振的出现。
  2.研究了在不同输入电流类型下,由电自突触和化学自突触驱动的神经元放电的反随机共振。引入随机HH模型和平均放电率的概念,利用神经元放电时间历程图和峰峰间期直方图来衡量反随机共振的程度。结果发现,无论是电自突触还是化学自突触,神经元的放电尖峰均随延迟时间的延长先减小后增大。此外,发现平均放电率曲线有几个极小值,称为多重反随机共振。此外,还发现,当延迟时间在一定范围内时,神经元的活动可以通过自突触电流来调节。同时,噪声强度和自突触电流强度可增强神经元的放电活动。因此,我们的研究表明,自突触可以调节和控制神经元的放电活动,诱导多反随机共振现象。
  3.研究了Levy噪声对神经元网络中神经元放电的影响,在整个网络中,随特征指数和尺度参数变化的平均放电率曲线存在一个最小值,即反随机共振现象。随着自突触电流强度和耦合系数的增加,神经元放电的反随机共振抑制作用减弱。另外,在Levy噪声的激励下,随着耦合强度的增加,神经网络的神经元放电变得更加强烈和规律。
其他文献
城市群作为区域的一个重要单元,对社会经济的发展起着关键性的作用。目前中国正处于改革创新、促进城市群一体化发展的重要阶段。作为中国综合实力领先、工业化进程较快的城市群,长三角在其发展建设过程中,科技创新发展不平衡的问题也日益凸显。因此,破解长三角城市群创新发展的不均衡现象,将对于其制定合理长远的科技发展战略、促进城市群协调发展具有一定的指导意义,使得长三角城市群真正成为引领区域经济发展的标杆,同时,
作为世界上最大的发展中国家,改革开放四十年以来,中国经济发展取得了举世瞩目的成就,工业化和新型城镇化进程日益加快。与此同时,资源消费日益加大,资源需求压力巨大。资源的安全已经成为事关中国全局性的重大战略问题。然而,在中国资源型地区,经济发展往往比较缓慢并有下降的趋势。虽然中国资源储备较为丰富,但却并未将资源优势转变为经济发展优势。资源开发与生态环境问题,往上追溯都是经济发展模式问题——即对物质资源
日新月异的互联网使得文本类数据与日俱增,过载的文本信息增加了检索、归类等任务的难度。传统的文本分类已难满足人类的需求,自动文本分类技术弥补了传统文本分类的不足,其能够自动完成文本分类任务,使得信息检索、分类等任务变得更加简洁高效。  机器学习作为一种数据挖掘技术,能够从大量数据中通过学习而获得人们所需要的信息。朴素贝叶斯算法作为机器学习中一种重要的分类技术,因结构简单、理论扎实及高效准确的特点,被
学位
随着遥感成像技术和计算机硬件的迅猛发展,产生了大量的高分辨率遥感图像。遥感图像已在多个领域广泛应用,从遥感图像检测城市建筑是目前的研究重点之一。由于城市是高密度建筑区域,即在较小范围内有大量结构相似的建筑紧密分布,经典的神经网络和分割算法很难在该场景中准确检测建筑实例。为了解决城市密集场景中的建筑实例分割问题,本文基于传统的分割算法和边缘检测的神经网络,提出了一种强化边界精度的建筑检测新方案。该方
学位
肿瘤治疗因其治愈率低,破坏性强,成为医学界难以攻克的课题。肿瘤细胞的生长演化机制与内在生长规律以及肿瘤细胞的生存性分析特征都为肿瘤治疗提供了强有力的理论支撑。值得指出的是随机微分方程领域的理论研究对肿瘤治疗的临床实践产生重要影响。为更好的研究探讨免疫监视条件下肿瘤演化机制与肿瘤治疗的新思路,本文基于随机微分方程理论和肿瘤免疫模型,系统研究了环境波动,周期治疗方法和随机切换对肿瘤细胞的生存性分析特征
在机器学习的许多领域中,都有高维数据存在,通过挖掘高维数据的结构来找到数据的紧表示对于以最小的存储空间来理解数据是非常关键的。近年来的研究表明,许多高维数据被看作是来自于多个低维线性子空间的并集的样本。本文研究了子空间聚类算法,提出了基于块对角表示的改进子空间聚类算法(New Subspace Clustering by Block Diagonal Representation,NBDR)并且在
对机器学习方法中分类模型的有关分类变量的研究,现有的研究大多集中在变量选择上。作为高维统计建模的基础,变量选择在大规模高维度数据处理问题上的重要性和必要性毋庸置疑。然而,针对低维数据,当可用于分析的变量总数并不多时,变量选择可能会导致关于总体分类有效信息的缺失,从而影响分类精度。同时,现有的二分类机器学习算法通常都会假定各分类变量对类别变量具有完全相同的影响,即在不考虑分类变量对类别变量可能存在不
在超高维数据的交互作用研究中,现存的方法都基于预先假定的特定模型进行筛选,而实际应用效果取决于真实模型与假设模型的相似度,当真实模型偏离假设模型时,可能会导致错误的选择结果。本文将主效应筛选中的无模型方法扩展到交互模型中,提出新的无模型交互作用筛选方法。本论文的主要内容和结论如下:  (1)提出了两种基于距离相关的无模型交互作用筛选方法ISDC-T与ISDC-B,这两种方法不要求层次模型假设,适用
在数字经济时代,越来越多的企业认识到数据的价值,越来越多运营过程中的数据被采集,并被进一步加以利用,帮助决策者进行企业运营状况评价和未来风险预警。其中,利用企业当前的一系列经济指标进行一段时间后的破产预测具有重要的意义。本文以此为背景,提出了针对高不平衡度、高维度、高相关性数据分类问题的方法——随机集成秩次k近邻算法(Random ensemble rank k-nearest neighbor
在统计学中,多借助零膨胀模型研究零膨胀数据潜在的模型结构及变量选择问题。然而,在多数情况下,响应变量的非零部分为定量数据,简单的零膨胀模型无法刻画这类数据的模型结构,对应的参数估计方法也不再适用。鉴于此,学者提出处理零膨胀半连续数据的两部模型。本文将惩罚函数的极大似然估计方法引入两部模型,研究其变量选择问题。本文的主要内容及结论如下:  1.阐明了基于惩罚函数极大似然估计方法的两部模型的原理,借助