【摘 要】
:
T2D是人类常见的复杂遗传疾病之一。随着生物学技术的不断完善,全基因组关联研究(GWAS)发现了许多T2D关联的SNP和基因。通过计算生物学方法,研究人员发现T2D相关的基因变化大约有一半是由SNPs引起的。这些GWAS关联SNP,通过影响miRNA的结合以及蛋白质磷酸化,从而导致疾病的易感性。本文基于特征分类及懒惰重启随机游走方法对T2D风险位点进行预测。目前这一领域已经出现了许多SNPs表型预
论文部分内容阅读
T2D是人类常见的复杂遗传疾病之一。随着生物学技术的不断完善,全基因组关联研究(GWAS)发现了许多T2D关联的SNP和基因。通过计算生物学方法,研究人员发现T2D相关的基因变化大约有一半是由SNPs引起的。这些GWAS关联SNP,通过影响miRNA的结合以及蛋白质磷酸化,从而导致疾病的易感性。本文基于特征分类及懒惰重启随机游走方法对T2D风险位点进行预测。目前这一领域已经出现了许多SNPs表型预测的方法,大部分都是利用蛋白质序列的进化信息或者其结构信息。但是这些方法的准确度、灵敏度等指标不够理想,针对这些问题,本文提出了一种基于机器学习算法T2D风险SNP预测的方法。首先根据已知的T2D、BMD、肥胖症GWAS关联SNP和其位置特征,分别用SVM、逻辑回归、决策树、随机森林机器学习分类算法对这些SNP分类,对比分析构建分类器。再结合其待测风险SNP关联基因与T2D GWAS SNP关联基因PPI网络以及T2D致病基因PPI网络的关联度,提出了 T2D风险位点的预测方法。根据待测的GWAS关联SNP的分类情况,判断该SNP是否是T2D风险位点。单独根据分类器进行预测存在一定的假阴性和假阳性数据。针对此问题提出了一种基于马尔科夫性质的懒惰重启随机游走方法(RWLR)。根据待测SNP的关联基因是否与T2D GWAS SNP关联基因、以及T2D致病基因相关,进一步确定是否是T2D风险SNP。我们首先构建T2D GWAS SNP关联基因PPI网络,再通过t-test筛选出T2D的致病基因,利用MIC计算其相关性构建T2D致病基因的PPI网络,在该网络上用懒惰重启的随机游走算法对待预测SNP的关联基因排名打分,根据该SNP关联基因最后的打分是否大于阈值判断是否与T2D有关。进而确定该SNP是否是T2D风险位点。最后,利用交叉验证法,以ROC曲线为指标验证整个预测方法。实验结果表明该方法是合理准确的,效果优于RWRH、RWMC算法,比单独基于SNP分类预测更准确合理。根据预测结果,我们对T2D风险位点做出了预测,这为进一步研究风险SNP对T2D的易感性提供了更高效的途径。
其他文献
乙酰羟酸合成酶(Acetohydroxyacid synthase,AHAS)是催化支链氨基酸生物合成第一步反应的关键酶,以该酶为靶标开发的商品化抑制剂具有高效、低毒、杀草谱广、安全性高等特点。然而,由于长期不合理的滥用,导致以该酶为靶标的除草剂抗性问题越来越严重。AHAS保守氨基酸残基的单点突变是其产生抗性的主要原因。其中P197L以及W574L两类突变引起的抗性问题最为严重。本文介绍了 AHA
路和圈是图的两种基本结构,是分析和刻画图的有利工具。有大量的实际问题可以归结为图的路和圈问题。所以图的路和圈问题是图论中一个十分重要而且活跃的研究课题。图论中三大著名难题之一的Hamilton问题,本质上也是图的路和圈问题。关于图的路和圈问题,国内外许多学者对此问题作了大量的研究工作。这方面的研究成果和进展可参见文献[2]-[12]。其中图的顶点的度性条件(包括顶点的最小度、任意两点的度和等)成为
随着工业和科技的高速发展,电网规模更大、结构更复杂,电压等级更高,使得高压开关柜内电气误操作事件的发生率越来越高,造成设备损坏、工厂停工、电网中断甚至危及生命。目前高压开关柜内的传统预警装置多采用氖灯预警,在明亮环境下很难分辨,且不能实时将开关柜内情况反馈给总控制台,导致误操作事故频繁发生。因此,设计一款具有在线实时检测的多功能预警系统非常有意义。本文设计的高压开关柜内安全作业预警系统不同于传统预
手性是生命体系的基本属性,从生命大分子蛋白质到小分子糖类、氨基酸等等,都具有手性,生命活动的进行离不开手性识别。近年来,基于弱相互作用对手性性质的研究,已受到了广泛地关注。考虑到生命体系中实际的三维限域空间,大多数的研究集中在溶液相或者二维界面的层面,这就在一定程度上限制了深入理解生命体手性现象的本质。来自生物纳米通道的启发,仿生纳米通道材料,已得到了越来越多的重视。其在结构上能提供纳米级别的限域
常微分方程边值问题是常微分方程理论研究中最为重要的课题之一.随着科学技术的进步与发展,工程、力学、天文学、经济学、控制论及生物学等自然学科和边缘学科领域中的许多实际问题都可归结为常微分方程的边值问题.我们都知道,寻求微分方程的通解十分困难,故从理论上探讨解的存在性及其性态一直是近年来研究的热点问题.随着常微分方程理论的不断发展,多点边值问题的研究日益活跃. 常微分方程多点边值问题是指常微
脱落酸(Abscisic acid)被称为“逆境激素”,在调节植物的生长发育和抵御生物或者非生物胁迫时有着至关重要的作用。研究表明ABA的受体是PYR/PYLs/RCAR蛋白家族,在拟南芥中该家族共有14个同源蛋白。植物体感知胁迫时,(PYR/PYLs/RCAR)介导的ABA可以抑制蛋白质去磷酸化酶Ⅱ型C(PP2C)的活性,这使得下游磷酸化的效应子大量积累以及与之相关的转录基因得以表达,从而提高了
α-糜蛋白酶广泛应用于医药、化工、环保、食品、饲料、纺织等工业领域,因此,对α-糜蛋白酶活性的研究具有重要的实用价值和理论意义。由于α-糜蛋白酶本质是蛋白质,其活性容易受到物理和化学因素的影响而改变。为了提高α-糜蛋白酶的活性,前人做了大量研究工作。添加保护剂保护α-糜蛋白酶是一种非常简便的方式,但以往的研究几乎都集中在均相体系中。酶固定法是一种很有应用前景的方式,固定的α-糜蛋白酶稳定性好,重复
细胞因子是由免疫系统细胞分泌的可溶性信号蛋白质,可用来调节免疫应答反应,在机体的免疫系统中起着重要作用。研究表明,在健康的人体中,细胞因子几乎是不可检测的。但是如果细胞因子的浓度一旦升高则表明与炎症或疾病进展相关的细胞因子通路被激活,机体就会体现不健康的状态。因此,细胞因子的检测在临床应用中具有重大意义。然而细胞因子含量极少(pM范围)、种类繁多,分泌过程十分的短暂,在机体内以复杂的方式彼此相互作
生物体中的内源性物质都具有特定的立体结构,如生命体系中的蛋白质都是由L-构型的氨基酸组成的,DNA都是右螺旋结构,天然存在的单糖大部分都是D-构型等,而手性药物在人体内的吸收、转运、分布和代谢等过程都会与生物体内的酶和受体作用,产生手性药理作用。经过文献调研,人服用手性药物后,药物在人体内发挥作用的首要步骤是与细胞膜上的某些蛋白质受体和通道结合,也即药物的跨膜传输。细胞膜以及生命体系大分子结构的复
随着全球气候变暖,水资源短缺和土壤盐渍化问题日益严重,耕地区因受干旱和高盐环境的恶劣影响,其作物的平均产量下降高达一半。因此探索具有发挥抗逆性作用的功能基因,将其应用到作物生产,具有极为重要的意义。棉花(Gossypium hirsutum)作为我国重要经济作物之一,其在国民经济中占据着十分重要的地位。然而,干旱、高盐等恶劣环境严重制约着棉花的产量和质量。植物水孔蛋白不仅参与水分的运输,同时在植物