二分网络—结构、演化及动力学

来源 :北京师范大学 | 被引量 : 0次 | 上传用户:hziyin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The macroscopical properties of complex system lie on the interaction structurebetween individuals, which can be described勿complex networks. So the in-vestigation of complex network has been the basis of studying complexity. Infact, complex networks can describe a wide range of systems in nature and soci-ety, such as biology system, society system and so on. One-mode network, theusual way to describe complex networks, only considers one kind vertices in thenetworks. However, some of realistic systems naturally show bipartite structure,which have two different sets of nodes and links only exit between nodes belongto different sets. As an important class of complex networks, bipartite networksavoids the drawbacks brought勿projecting into one-mode networks and providesa new way to depict properties and function of systems.   In this thesis, after introducing some formed notions and properties of bi-partite networks in Chapter 2, we begin Chapter 3 with the study of clusteringcoefficient and community structure on bipartite networks. In this part, based onthe approach of standard clustering coefficient of one-mode networks, a definitionof the clustering coefficient for bipartite networks based on the fraction of squaresis proposed. In order to detect community structures in bipartite networks, twodifferent edge clustering coefficients LC9 and LC3 of bipartite networks are de-fined, which axe based on squares and triples respectively. With the algorithmof cutting the edge with the least clustering coefficient, communities in artificialand real world networks are identified.   In Chapter 4,we mainly discuss evolution models of bipartite networks.First, we introduce and analyze 6 Real-World Bipartite Networks. According tothe relationship of two sets of nodes, they are classified to two types. dependencebipartite networks and independence bipartite networks. Then by analyzing. theresults show that the actors nodes have scale-free property in the dependencenetworks. In order to understand this behavior, two growing bipartite modelswithout the preferential attachment principle are proposed. The models showthe scale-free phenomena in actorss degree distribution. It also gives well qual-itatively consistent behavior with the empirical results.   At last, we discuss the bootstrap percolation on bipartite networks in Chap-ter 5. The rule of bootstrap percolation model on bipartite networks is introducedfirstly. Then we obtain the analytical results and simulation results of whole pro-cess, the size of final active fraction Sa shows a jump as a function of initial activeprobability f . Apart considering the influences to above behaviors brought勿the different values of the network size, the active threshold S2 and the meandegree,we got there was a special point where the jump disappears as theactive threshold growing or the mean degree decreasing.Keywords: Complex networks, Bipartite networks, Empirical networks, Clus-tering coefficient, Community structure, Evolving model, Bootstrap percolation,Phase transition
其他文献
本文通过对荣华二采区10
期刊
换流变压器是特高压直流输电系统中的核心设备之一,其运行可靠性对整个电网的的安全运行有着重要影响。运行中的换流变压器除承受交流电压、雷电冲击和操作过电压外,还要承受直流电压、交直流叠加电压和极性反转电压的作用。在这些电压作用下,换流变压器内部电场分布、空间电荷的积聚与分布、绝缘油油流带电情况等都与普通电力变压器存在很大的差异,并导致换流变压器内部绝缘的异常放电与击穿。本文主要针对换流变压器的油流带电
本文通过对荣华二采区10
期刊
随着电力市场的不断发展,传统调度模式中忽视效率的弊端日益明显,而节能调度则得到了越来越多的重视及应用。由于节能调度在机组组合时对系统能耗的要求更为严格,导致系统的稳定
班主任工作中需要爱心与智慧,爱,让德育充满智慧的灵动。智慧,让德育培育出爱的果实。班主任工作如能充满着爱的阳光并且张扬着智慧的灵动,学生就能接受并在她的关照下快乐成长。
学位
本文主要研究切换线性系统的稳定性、切换线性控制系统的镇定。其次为将切换线性系统的理论应用于切换非线性系统,本文随后研究切换非线性系统的线性化问题。主要研究结果如下
模型驱动软件开发(Mode-DrivenSoftwareDevelopment,MDSD)是一种以模型作为系统开发活动的主要制品,以领域分析与建模为核心的软件工程方法。为改善传统的软件系统开发方法提供
互联网规模和覆盖面的迅速增长带来了信息超载的问题:过量信息同时呈现使得用户无法从中获取对自己有用的部分,信息使用效率反而降低。现有的很多网络应用,比如门户网站、搜索引
本文通过对荣华二采区10