面向空间文本数据的Skyline查询处理研究

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:netting_fish
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着数据库技术在交通、娱乐等领域的普及应用,国内外学者们开始探究如何从多维数据中筛选出满足查询需求的关键数据。而 Skyline 查询作为当今信息技术领域中高效的检索方案之一,能够有效地筛选出符合用户所给出的多偏好查询需求的对象点集。由于移动设备及其配套服务与设施的快速普及,各类移动应用中产生了海量的空间文本数据。针对空间文本数据中复杂的属性构成,传统Skyline查询方法在有效性、通用性等方面存在着许多缺陷与不足之处。鉴于此,本文从实际生活中真实的查询场景出发,针对面向空间文本数据的 Skyline 查询特点进行多方位的研究,主要研究工作如下:
  (1) 探究现有工作在解决道路网空间上连续关键词 Skyline 查询问题上的不足,提出了一种基于空间索引的连续关键词Skyline查询算法——ICKS算法。该算法将查询计算过程中与用户相关的因素进行剥离,给出了 Skyline 路段集的概念。基于此,提出了一种针对道路网路段信息的索引结构LMR-Tree,将复杂的道路网支配关系计算转化为计算Skyline路段集中的道路网地标信息,有效地减少了道路网支配计算次数,并利用倒排索引和哈希表进一步优化关键词匹配计算的过程。
  (2) 考虑用户可能更关注于满足查询偏好的局部数据间优劣关系,提出了一种关键词优先的空间Skyline查询算法——KFSS算法。为了充分满足查询用户的偏好性需求,定义了一种基于加权距离的空间文本支配模型,并给出了一种空间文本索引结构STR-Tree。基于该索引,利用位图与倒排索引相结合的方式,可快速剪枝不满足查询条件的无关对象点。其次,在支配计算的过程中该算法利用最小值过滤法和求和过滤法两种剪枝策略,有效地减少了空间文本支配计算次数。最后,采用模拟数据集对KFSS算法进行了对比实验,并在真实数据集上进一步验证了算法的查询性能。实验结果表明,KFSS算法相较于现有算法更为高效。
  (3) 由于用户在查询过程中可能仅关注于数据的部分数值型属性维度组合,考虑子查询空间上关键词Skyline查询问题,提出了一种可以解决该问题的Naive算法。为了返回一组结果规模可控且参考价值较高的结果集,给出了一种基于对象点权重的子查询空间上关键词 Skyline查询算法——KTS 算法。该算法给出了一种对象点权重的度量方案,考虑 Skyline 频率和关键词频率的影响,可有效衡量对象点在查询结果集中的价值大小。其次,针对 Skyline 频率计算过程,提出了一种高效的全体子查询空间上Skyline结果集计算方法,进一步优化了计算效率。
其他文献
近年来,伴随着智能技术的发展,智能化的移动机器逐渐走进人们的视野,定位技术作为移动机器人的重要技术之一,一直是人们关注的热点。目前最常用的定位系统为GPS和惯导,GPS可以实现在各种气候条件下、持续精密的导航,但受外界影响比较大,在有电磁干扰或者有遮挡的情况下不可用,惯导系统虽不受外界干扰,但会随时间的积累产生累积误差,定位的精度会受到影响。现今随着机器视觉技术的不断发展,基于视觉的定位方法,尤其
学位
随着计算、通信和传感器技术的快速发展,大量的复杂动态系统比如自动制造系统,智能交通系统和物流系统等应运而生,它们都具有混合命令、控制、通信和信息问题的特征。由于各种信号的并发和冲突以及人为设计的运行规则,系统状态只能通过随时间异步发生的离散事件来改变。因此,这类人造系统通常被视为离散事件系统。特别地,由Ramadge和Wonham共同提出的监督控制理论为离散事件系统的控制提供了有力的支撑,其特点在
随着图像领域的飞速发展,导航系统中也渐渐开始使用计算机视觉技术。在GNSS(全球卫星导航系统)拒止条件下,面向无人机安全自主着降的任务需求,设计了一种新型合作标志,研究了目标的特征提取与跟踪方法,研究了无人机视觉导航位姿解算方法,研究了固定翼无人机着降视觉导航技术和固定翼无人机的回收技术等视觉导航应用,提出了一种使用视觉导航来修正无人机基于惯导推算的位姿累积误差的方法,最终实现了无人机的安全自主着
学位
近年来,卷积神经网络在计算机视觉领域取得了巨大成功,其在不断提高图像分类、目标检测和图像语义分割等任务精度上限的同时,模型尺寸与运行时间也在急剧增加。由于移动端设备存在存储空间和计算能力的约束,使得现有卷积神经网络无法在这些资源受限设备上进行很好的部署和应用。在这种情况下,研究人员通过设计高效的卷积结构来代替传统网络中的标准卷积层,以达到减小模型参数量和运算量的目的,但是此类方法仍然存在模型泛化能
深度学习已经得到飞速发展,在图像识别领域,卷积神经网络的鲁棒性保证显得尤其重要。由于卷积神经网络的分布式表示特点,会对输入图像产生众多特征表示,这些特征表示中存在大量噪声信息,会严重影响网络的性能,此外由于训练数据的局限性,会影响神经网络区分非正常输入的能力。为了提高卷积神经网络的鲁棒性,我们在噪声通道选择、噪声特征过滤和防御对抗攻击三个方面分别提出了三个方法。针对噪声通道的存在而影响神经网络鲁棒
学位
随着RNA-seq产生的读段数量日益增加,读段比对成为了一个非常耗时的任务和环节。在RNA-seq分析中,准确而又有效的读段比对一直是一个难点和挑战。许多比对算法在可容忍的时间范围内采用不同的策略来为读段寻找可能的比对位置,并且为下游分析提供大量的比对信息。但是一些转录本分析任务(如转录本定量分析)只需要得知读段在转录本上的位置即可。由于转录本不含有内含子,读段可以被连续地比对到参考转录本,而不需
学位
传统的图像去模糊算法是通过估计模糊核的方式进行图像的盲去模糊,运行速度较慢,实际应用价值不大。受到近年来提出的图像到图像风格转换任务的启发,我们注意到图像的盲去模糊可以视为图像到图像的风格转换问题。所以本文着重于研究如何将生成对抗网络应用于图像的盲去模糊,同时还有研究如何在保证神经网络的去模糊质量的情况下,压缩模型大小和减少参数量。本文提出的减少生成对抗网络模型参数量的方法有两种思路,一种是设计用
监督学习通常需要大量标记样本训练模型。然而,在许多真实场景下,我们只有少量的已标记样本,以及大量的未标记样本,且标记的获取往往需要耗费大量的人力物力。主动学习通过有选择性地向专家查询对模型提升最有帮助的样本以减轻数据标注的代价,目的在于以尽可能少的代价获得性能尽可能高的模型。目前大多数现有的主动学习研究主要集中在样本选择策略上,尽管它们能够显著降低数据标注量,但数据采集的整体成本仍然较高,这其中有
学位
推荐系统通过对互联网应用中的用户、物品、上下文信息等对象进行建模,自动为用户推荐其可能感兴趣的物品,可缓解互联网时代的信息过载问题。由于推荐算法的输入特征是由多个对象的one-hot或multi-hot编码组成的,特征稀疏且维度高,因而进行特征交叉对于捕捉有用信息十分有效。同时,这些对象亦可用异构图进行表示,例如用户和物品之间的二分图、物品之间的关系图等,图结构可直观地体现对象之间的联系。本文围绕
学位
传统监督学习技术在很多领域任务取得了很好的应用效果,但监督学习假定模型具有足够充分的有标记数据来训练,并且数据标记准确可靠,该条件在很多现实任务中难以满足。在实际应用中,数据的收集和标注需要消耗高昂的成本,且人工标注的监督信息往往较为粗糙且包含噪声。弱监督学习是处理这类信息的一种主流学习方法。本文主要针对弱监督学习中标记数据缺失的问题,基于主动学习和半监督学习技术提升开集分类、深度学习和图网络学习
学位