【摘 要】
:
传统监督学习技术在很多领域任务取得了很好的应用效果,但监督学习假定模型具有足够充分的有标记数据来训练,并且数据标记准确可靠,该条件在很多现实任务中难以满足。在实际应用中,数据的收集和标注需要消耗高昂的成本,且人工标注的监督信息往往较为粗糙且包含噪声。弱监督学习是处理这类信息的一种主流学习方法。本文主要针对弱监督学习中标记数据缺失的问题,基于主动学习和半监督学习技术提升开集分类、深度学习和图网络学习
论文部分内容阅读
传统监督学习技术在很多领域任务取得了很好的应用效果,但监督学习假定模型具有足够充分的有标记数据来训练,并且数据标记准确可靠,该条件在很多现实任务中难以满足。在实际应用中,数据的收集和标注需要消耗高昂的成本,且人工标注的监督信息往往较为粗糙且包含噪声。弱监督学习是处理这类信息的一种主流学习方法。本文主要针对弱监督学习中标记数据缺失的问题,基于主动学习和半监督学习技术提升开集分类、深度学习和图网络学习等复杂任务的学习效果。主要研究工作包括:
(1)针对开集分类中标记数据稀缺的问题,本文提出了基于实验设计的主动学习样本挑选方法,一次性选取批量数据作为训练集,改善了被选样本子集的信息重叠问题,并提出了基于低秩表示的开集分类模型有效利用有限监督信息。本文基于低秩表示提取的主特征中的关联度矩阵来检测新类并对已知类数据进行细分类,并基于增量奇异值分解的方法避免了繁琐的原始优化过程,在模型使用时利用提出的方法可快速对每个测试样本计算其与已标记数据集的关联度矩阵,从而降低了测试样本的预测计算复杂度。
(2)针对深度学习需要大量有标记训练数据的问题,本文提出了结合源域预训练模型和任务区分性指标的主动学习方法,在目标域数据上通过挑选少量样本最大程度改善模型性能。在神经网络中选择两层特征,根据提出的任务区分性指标计算特征在网络中的学习表示变化,使挑选出的样本既能改善中低层网络的特征学习,又能兼顾改善训练模型的高层网络即分类器,从而减少深度网络模型对训练样本的需求。
(3)针对图网络数据中仅有部分节点具有标记的问题,本文提出了基于高斯过程的半监督图学习方法。一方面利用图网络结构关系对节点的特征进行聚合,可以同时利用原始输入空间和和经过核映射的希尔伯特空间特征关系;另一方面利用结构关系构造标记光滑性约束项,针对高斯过程的概率预测结果利用对称马氏距离完成约束作用,能有效提升半监督条件下的预测性能。
其他文献
随着数字媒体的不断发展,视频技术已经越来越多的应用于各个领域。但是,由于视频本身携带的数据量很大,直接应用不够现实,因此,需要在传输之前对其进行压缩。为了适应视频高分辨率的要求,视频编码技术经过了一系列发展,比如从H.264(Advanced Video Coding)到HEVC(High Efficiency Video Coding)等。针对这些编码标准的高复杂度问题,目前也有相关优化算法被提
近年来,伴随着智能技术的发展,智能化的移动机器逐渐走进人们的视野,定位技术作为移动机器人的重要技术之一,一直是人们关注的热点。目前最常用的定位系统为GPS和惯导,GPS可以实现在各种气候条件下、持续精密的导航,但受外界影响比较大,在有电磁干扰或者有遮挡的情况下不可用,惯导系统虽不受外界干扰,但会随时间的积累产生累积误差,定位的精度会受到影响。现今随着机器视觉技术的不断发展,基于视觉的定位方法,尤其
随着计算、通信和传感器技术的快速发展,大量的复杂动态系统比如自动制造系统,智能交通系统和物流系统等应运而生,它们都具有混合命令、控制、通信和信息问题的特征。由于各种信号的并发和冲突以及人为设计的运行规则,系统状态只能通过随时间异步发生的离散事件来改变。因此,这类人造系统通常被视为离散事件系统。特别地,由Ramadge和Wonham共同提出的监督控制理论为离散事件系统的控制提供了有力的支撑,其特点在
随着图像领域的飞速发展,导航系统中也渐渐开始使用计算机视觉技术。在GNSS(全球卫星导航系统)拒止条件下,面向无人机安全自主着降的任务需求,设计了一种新型合作标志,研究了目标的特征提取与跟踪方法,研究了无人机视觉导航位姿解算方法,研究了固定翼无人机着降视觉导航技术和固定翼无人机的回收技术等视觉导航应用,提出了一种使用视觉导航来修正无人机基于惯导推算的位姿累积误差的方法,最终实现了无人机的安全自主着
近年来,卷积神经网络在计算机视觉领域取得了巨大成功,其在不断提高图像分类、目标检测和图像语义分割等任务精度上限的同时,模型尺寸与运行时间也在急剧增加。由于移动端设备存在存储空间和计算能力的约束,使得现有卷积神经网络无法在这些资源受限设备上进行很好的部署和应用。在这种情况下,研究人员通过设计高效的卷积结构来代替传统网络中的标准卷积层,以达到减小模型参数量和运算量的目的,但是此类方法仍然存在模型泛化能
深度学习已经得到飞速发展,在图像识别领域,卷积神经网络的鲁棒性保证显得尤其重要。由于卷积神经网络的分布式表示特点,会对输入图像产生众多特征表示,这些特征表示中存在大量噪声信息,会严重影响网络的性能,此外由于训练数据的局限性,会影响神经网络区分非正常输入的能力。为了提高卷积神经网络的鲁棒性,我们在噪声通道选择、噪声特征过滤和防御对抗攻击三个方面分别提出了三个方法。针对噪声通道的存在而影响神经网络鲁棒
随着RNA-seq产生的读段数量日益增加,读段比对成为了一个非常耗时的任务和环节。在RNA-seq分析中,准确而又有效的读段比对一直是一个难点和挑战。许多比对算法在可容忍的时间范围内采用不同的策略来为读段寻找可能的比对位置,并且为下游分析提供大量的比对信息。但是一些转录本分析任务(如转录本定量分析)只需要得知读段在转录本上的位置即可。由于转录本不含有内含子,读段可以被连续地比对到参考转录本,而不需
传统的图像去模糊算法是通过估计模糊核的方式进行图像的盲去模糊,运行速度较慢,实际应用价值不大。受到近年来提出的图像到图像风格转换任务的启发,我们注意到图像的盲去模糊可以视为图像到图像的风格转换问题。所以本文着重于研究如何将生成对抗网络应用于图像的盲去模糊,同时还有研究如何在保证神经网络的去模糊质量的情况下,压缩模型大小和减少参数量。本文提出的减少生成对抗网络模型参数量的方法有两种思路,一种是设计用
监督学习通常需要大量标记样本训练模型。然而,在许多真实场景下,我们只有少量的已标记样本,以及大量的未标记样本,且标记的获取往往需要耗费大量的人力物力。主动学习通过有选择性地向专家查询对模型提升最有帮助的样本以减轻数据标注的代价,目的在于以尽可能少的代价获得性能尽可能高的模型。目前大多数现有的主动学习研究主要集中在样本选择策略上,尽管它们能够显著降低数据标注量,但数据采集的整体成本仍然较高,这其中有
推荐系统通过对互联网应用中的用户、物品、上下文信息等对象进行建模,自动为用户推荐其可能感兴趣的物品,可缓解互联网时代的信息过载问题。由于推荐算法的输入特征是由多个对象的one-hot或multi-hot编码组成的,特征稀疏且维度高,因而进行特征交叉对于捕捉有用信息十分有效。同时,这些对象亦可用异构图进行表示,例如用户和物品之间的二分图、物品之间的关系图等,图结构可直观地体现对象之间的联系。本文围绕