蛋白质--RNA界面的保守残基成簇性分析及其在结合位点识别中的应用

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:a2619040
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
蛋白质结构稳定性的维持和生物学功能的发挥需要空间邻近残基之间的协同作用。对于分子间相互作用,保守残基可能在界面内形成一个或多个局部的簇,进而促进功能模体的形成。先前的研究表明,蛋白质一蛋白质界面上保守残基成簇聚集在一起。与蛋白质表面其它部位的残基相比,蛋白质界面的残基通常更为保守。为了研究此性质是否有助于蛋白质-RNA复合物的结合位点识别,在这项工作中,系统地研究了蛋白质-RNA相互作用界面内保守残基的空间分布特征。
  本论文包括三部分工作:
  (1)非冗余蛋白质-RNA复合物数据库的建立及其多肽链的进化保守性分析。
  对160个蛋白质-RNA复合物中191条多肽链的分析表明,与其它类型的多肽链相比,与tRNA相互作用的多肽链进化相对较快。此外,蛋白质.RNA复合物中不同多肽链的进化也呈现出明显的差异。对于不同区域残基的统计分析表明,相比溶剂暴露表面,界面残基通常更为保守,而最保守的是存在于蛋白质内部,以折叠多肽链的形式维持结构和功能稳定性的残基。也对不同区域中20种不同类型的氨基酸残基进行了进化保守性分析。
  (2)评价复合物数据库中界面内保守残基的相对聚集程度。
  通过对数据库内蛋白质界面上保守残基空间分布的分析,发现77.8%的界面具有保守残基在整个界面区域内成簇聚集的趋势。较大界面上的保守残基通常可以形成两个或多个不同的子簇。这些由保守残基组成的结构簇意味着蛋白质-RNA界面内的功能性重要区域,可以通过实验扫描突变研究进行进一步的结构和能量分析。在保守残基簇中,疏水性残基(Leu、Ile、Met)、所有芳香族残基(Tyr、Phe、Trp)以及唯一一个带正电荷的Arg残基是偏好于出现在簇中的,但带电残基(包括正电和负电)则不偏好出现在簇中。
  (3)成簇分析对识别结合位点和hot spot残基的可行性分析。
  通过比较区域内保守残基的聚集程度,探索了这种方法在区分结合位点(界面)和随机表面区域方面的可行性,发现有31.1%的真实界面排在1000个随机生成的表面区域的前10%内,这表明其在识别真实界面时具有一定的潜在能力。对于实验hotspot残基(△△G≥2.0kcal/mol)数据,发现其中51.5%位于保守残基簇中,并且与簇中的偏好残基类型基本一致,表明这些偏好残基在蛋白质-RNA结构稳定性中起着关键作用,可作为药物设计的参考靶点以及实验扫描突变研究的参考位点。
  综上所述,对蛋白质-RNA复合物进行保守残基成簇性分析,将有助于对结合位点的预测研究。另外,识别复合物界面上的保守残基簇也将为实验丙氨酸扫描突变实验研究提供可能的潜在靶点,为药物设计提供理论支持。
其他文献
工作目的:目前以纳米金颗粒为基础的药物载体的研究仍有一些局限,例如结构尺寸较为固定,响应灵敏度、效率较低,不易调控,响应区间宽,表面修饰物分子量过大,不易穿透肿瘤组织,易在体内积聚,生物相容性较差等缺点。故我们在探索不同修饰方式对金颗粒影响的基础上,针对目前载体尺寸固定、响应灵敏度低、表面修饰分子量过大等问题,提出一种全新的金纳米药物载体设计思路。本研究希望利用可变结构的DNA,设计出具有良好生物
细胞膜化学环境高度异质,性质多样,且功能基团丰富。细胞表面工程技术可以将有机、无机材料以共价或非共价方式锚定于细胞膜表面,以实现相应功能,例如:细胞保护、免疫隔离、细胞迁移控制以及细胞受体修饰等。  然而,由于细胞对外界环境的敏感程度高,使得细胞表面工程(CSE)在应用方面存在极大挑战。渗透压、pH、离子强度、温度等因素的变化,均会影响细胞的生物活性及细胞固有生物学功能。以静电相互作用结合的方法,
烟草是诱发食管癌的主要因素。其中,4-(甲基亚硝胺基)-1-(3-吡啶基)-1-丁酮(4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone,NNK)是香烟烟雾多种致癌物质中含量最高的一类烟草特异亚硝胺,它可以诱导动物肺癌,食管癌,口腔癌等癌症的发生。另外,近来有关HPV与食管癌相关性的研究相继被报道,但差异性很大。流行病学证据表明HPV能与烟草烟雾产生协同致
学位
爱泼斯坦-巴尔病毒(Epstein-Barr virus,EBV)感染与多种人类肿瘤发生密切相关。鼻咽癌(Nasopharyngeal carcinoma,NPC)主要发生在我国南方及东南亚等地区,发病率可高达25-50/10万。NPC高发区约有95%的病例为未分化型非角质化癌,EBV可在约98%的非角质化NPC病例中检测到。因此NPC是EBV相关肿瘤免疫治疗策略开发的理想模型。NPC中表达的EB
学位
背景:众多中枢神经系统疾病都伴随神经炎症。神经炎症引发和加剧的核心环节在于小胶质细胞的激活。激活的小胶质细胞释放多种神经炎性分子,造成炎性组织微环境,进而引起神经元结构和功能异常。我们前期研究结果显示在小胶质细胞激活过程中,其谷氨酰胺酶表达水平显著提高。静息态小胶质细胞过表达谷氨酰胺酶后可诱导小胶质细胞的激活,同时增加细胞外囊泡的释放。近期有研究表明,激活态小胶质细胞所释放的细胞外囊泡能够引起神经
目的:  糖尿病视网膜病变(Diabetic Retinopathy,DR)是一种糖尿病性微血管病变,是糖尿病中最常见、最重要的致盲病,其发病机制与高血糖诱导的氧化应激、多元醇途径、慢性炎症等有关。神经胶质成熟因子-beta(GMFB)是由脑组织提取得到的一种17kDa的酸性蛋白质,主要在中枢神经系统中星型胶质细胞和一些神经元表达。实验室前期研究发现,GMFB在糖尿病早期视网膜病变中起着重要作用。
神经干细胞是一类具有自我更新能力且能分化为神经元、星形胶质细胞以及少突胶质细胞的组织干细胞,在哺乳动物体内主要分布于大脑的室管膜下区及海马齿状回颗粒下区。大量研究表明,包括脑卒中损伤在内的中枢神经系统损伤能激活神经干细胞参与损伤的修复。然而当脑卒中发生后,不仅神经干细胞参与脑损伤的修复,而且血管内皮细胞、周细胞、胶质细胞等其他终末分化细胞也将共同参与修复。  为研究神经干细胞与神经血管单元对脑卒中
在世界范围内,癌症是引起人类死亡的主要原因之一。每年癌症死亡人数大约有820万人。其中非小细胞肺癌(Non-smallcelllungcancer,NSCLS)导致的死亡人数超过一百万,而肺腺癌(Lung adenocarcinoma,LUAD)是NSCLC中最常见的组织学类型。自2011年国际肺癌研究协会/美国胸科学会/欧洲呼吸学会(IASLC/ATS/ERS)引入新的组织学分类后,越来越多的研
学位
O6-烷基乌嘌呤-DNA烷基转移酶(AGT)是一种重要的DNA修复酶,AGT可将DNA鸟嘌呤O6位上的甲基、氯乙基和苄基等烷基基团转移至自身第145位半胱氨酸残基上,所以AGT在保护正常细胞DNA不受烷化剂损伤的同时,也能够修复抗癌烷化剂对肿瘤细胞DNA的损伤,进而导致抗肿瘤药物的耐药性。氯乙基亚硝基脲(CENUs)通过诱导DNA形成dG-dC股间交联使癌细胞凋亡从而发挥抗癌效果,常用于治疗脑瘤、
在新药研发过程中,需要对候选化合物的安全性进行评价,主要采用交叉参照方法来填补其毒性数据空白。传统的交叉参照方法主要是基于化学相似性原理发展起来的,该原理主要参照化合物的结构、活性和物理化学性质方面的信息。但是,化合物的毒性一般都与复杂的毒性机制相关联,因此,当预测新化合物的毒性时,仅仅基于化学相似性的交叉参照方法不能准确评价其毒性,经常出现“活性悬崖”问题,即化学结构高度相似,毒性结果却完全不同