论文部分内容阅读
感应能量传输技术(Inductive Power Transfer)的基础物理学原理为法拉第电磁感应原理,该技术利用快速变化的瞬态电磁场进行能量传输。它的原理和普通的传统变压器相似,但是其耦合线圈结构和形状与传统变压器存在很大的差异。首先,在IPT系统两个耦合器之间存在很大空隙,其值可以达到100mm以上,两个线圈的耦合率相对传统变压器而言要小的多。其次,在不同的应用条件下,耦合线圈形制不同,线圈之间可能不存在磁芯。这种与传统变压器的紧密耦合方式不同的新方式称为疏松耦合。感应电能传输技术改变了过去使用的传统供电方式,使电能可以通过电磁场的耦合进行传输。由于感应电能传输系统的发射端和接受端之间没有电气连接,从而能从根本上消除普通接插件引起的电弧,火花等。因此,能够广泛使用于存在易燃气体、粉尘、振动等的恶劣环境中。并且,由于其非接触的特性,对于移动终端、植入式装置、轨道车、电动汽车等的能源补充也有相当大的优势。 本文首先介绍了论文的研究背景、IPT技术的基本原理与特点,讨论了该技术的发展历程以及国内外研究人员对该项技术的研究现状。同时文章还说明了感应电能传输技术的关键点和研究意义与发展趋势。之后详细介绍了感应电能传输系统的系统构成及基本特性,还对感应电能传输系统的工作原理进行了分析,对松耦合变压器进行了相关磁路和相关电路的模型构建,讨论了系统能量传输的制约因素,表明了感应电能传输系统中使用补偿拓扑的必要性。 本文重点分析了基本的单侧补偿和双侧补偿拓扑,系统地研究了各种基本补偿拓扑的阻抗特性,得出了不同补偿拓扑的参数。并且在传统补偿拓扑的基础上,提出了一种新型的PSS感应电能补偿拓扑,并对该拓扑的输出特性,主电路相位角和系统效率问题进行了详细的分析。该拓扑可以用于提高圆盘形耦合器的偏移量阈值,使得耦合系数在一定区间变化时,系统的输出功率在被保持在特定范围内。该方法省去了耦合器特殊设计的高成本,以及复杂的频率跟踪控制系统。 最后研制了感应电能传输系统的实验平台。讨论了相关结构和器件的选择,实现了新型拓扑的实验验证。