3-李代数的2-步幂零子代数与Hom-结构

来源 :河北大学 | 被引量 : 0次 | 上传用户:shi_bc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在n-李代数的理论中,幂零3-李代数的结构是非常重要的.在本文中,我们研究一类非2-步幂零3-李代数,但它的极大子代数都是2-步幂零的.事实证明,如果一个非2-步幂零的3-李代数L的极大子代数都是2-步幂零的,则L是幂零的3-李代数.若dim L≠3,则 dim L≥6且13≤dim L≤dim L?3.而且只存在一类6-维这样的3-李代数.文章还研究了从线性函数和线性映射来实现Hom-3-李代数,以及一种无限维3-李代数的Hom结构.  文章的结构如下:  第一部分,n-李代数的基本概念.  第二部分,讨论非2-步幂零的3-李代数它的极大子代数都是2-步幂零的,并对这样的3-李代数进行分类.  第三部分,讨论Hom-3-李代数的实现.  第四部分,讨论一种无限维3-李代数的Hom结构.
其他文献
本文研究了三类带泊松跳的随机延迟微分方程的Split-Step算法。首先,针对一类带跳的具有固定时滞的线性随机延迟微分方程,本文给出了基于Euler-Maruyama法的Split-Step算法,证明
学位
实长方张量出现于固体力学椭圆率的条件问题和量子物理学中的缠绕问题.在本文中,研究非负长方张量奇异值的性质.给出长方张量与方张量之间的具体转换关系,利用这转换,给出非负长
学位
随着人们对数学史教育价值的发现和重视,以及中学课改不断深入,越来越多的教育专家和一线教师开始关注“数学史与中学数学教育”的关系.本文主要是从文献综述、理论基础和教育
加权复合算子是复合算子和乘法算子的结合,在过去二十年里不同解析函数空间上加权复合算子的有界性和紧性得到广泛的研究.本文主要研究单位圆盘D上的一类解析函数构成的再生核
骨质疏松症是一种在更年期后的女性和老年男性人群中非常常见的疾病,这种疾病会导致患病人群发生骨折的风险增加。如果我们能够准确地预测骨质疏松症患者发生骨折的风险,那么对
Von Neumann代数是群代数的推广。在群的左正则表示下,群表示元生成的代数与它的换位子同构。而von Neumann代数和它的换位子的关系是vonNeumann代数理论初期的一个中心问题。
正系统广泛的应用于生物医学、工程、经济等领域,因此正动力系统成为众专家学者关注的问题,并取得了令人鼓舞的成果.但是,在现实生活中,存在许多不确定因素,因此有必要研究系统的
本文中,我们主要研究区间值时间序列模型及区间值投资组合模型,共分五部分内容.  第一部分:我们首先阐明建立区间值时间序列模型及区间值投资组合模型的必要性,介绍集值随机理