论文部分内容阅读
本文研究受随机外激和(或)参激的多自由度非线性系统的幅值和状态变量响应的近似瞬态概率密度。首先,应用基于广义谐和函数的随机平均法导出关于幅值瞬态概率密度的Fokker-Planck-Kolmogorov方程,然后,将幅值的瞬态概率密度的近似解表示为多重正交基函数的级数和,其中系数是随时间变化的,最后用Galerkin 法可得到幅值及其他状态变量的近似瞬态概率密度。以受高斯白噪声作用的非线性阻尼耦合的两个Van der Pol 振子为例,通过解析解与数值模拟结果比较证实该方法有很好的精度。