解析半群相关论文
本文利用算子半群理论,研究了抽象发展方程ω-周期解的存在性,唯一性,正则性和渐近性态,这里假设A为扇形算子f:R×E→X连续,关于t......
动力系统的研究目的是为了了解自然界中各种随时间而变化的发展现象的规律.在数学上,无穷维动力系统比有限维动力系统更为一般,并......
本文共分三章。第一章首先证明了关于Hille-Yosida算子的两种无界扰动仍是Hille-Yosida算子的两个扰动定理,然后依此给出了边界扰动......
Banach空间中的非局部Cauchy问题是泛函分析和泛函微分方程理论的重要分支之一.由于其在生物技术、物理、优化控制等领域有着广泛......
自从M.H.Stone在1932年提出了 Stone定理以来,Banach 空间中的线性算子半群理论逐渐得到进一步的发展和完善,算子半群方法已经成为......
学位
本论文主要运用算子半群理论并结合抽象空间中的一些不动点定理,讨论Banach空间中扇形算子发展方程u’(t)+ Au(t)= f(t,u(t)),t>0......
众所周知,飘移波和紊乱飘移波在了解托卡马克聚变反应堆的等离子边界上的反常传输中起主要作用.一个一维场的描述这种情况的方程就称......
该报告中的研究对象为无限维系统,包括确定性的抽象发展系统和随机系统,它们为典型的复杂系统,是当前控制科学研究的重点和前沿之......
在任何反馈系统中,时滞总是存在,只是很小,而常被忽略.因此研究反馈闭环系统中的小时滞对控制系统的敏感性是极其重要的,并已引起......
本文应用算子半群理论,研究了Banach空间中半线性强阻尼波方程初值问题{u"(t)+aAu(t)+Au(t)=f(t,u(t),u(t)),t>0u(0)=x0,u(0)=y0解的......
经典的Besov空间和Triebel-Lizorkin空间在偏微分方程的研究中起了非常重要的作用。J.Bourgain,T. Tao,C.E.Kenig,T.Kato等人将它们......
本文,首先我们讨论一类无限时滞抽象泛函微分方程广义解的存在唯一性,其中(-A,D(A))是解析半群T(t)的无穷小生成元,‖ T(t)‖≤Me-......
本文应用能量积分和解析半群的有关估计,研究广义二维Ginzburg-Landau方程在Banach空间Lp(Ω)的子空间Xap的指数吸引子.......
讨论了Banach空间中抛物发展方程d(x(t)+g(t,(x)))/dt+A(t)x(t)=f(t,x(t))的存在结果,这里A(t)生成一个发展系统,函数f,g是连续的.......

