弱拓扑相关论文
混沌科学在20世纪与相对论和量子力学统称为物理学中的三大发现.它开创了科学模型化的一个新的范例,给我们认识了解物质世界以及人......
无穷级数一直在数学的发展中起着不可取代的作用,Banach空间中无穷级数的理论是数项级数的推广,而无条件收敛性是Banach空间中无穷......
本文研究了有界各向异性介质中的麦克斯韦方程▽ ×(μ(x)-1▽× E)-ω2ε(x)E=(?)EF(x,E)+λ·|E|α-1.E在次线性扰动下的多重解.......
众所周知,单调性在Banach格中的角色如同凸性在Banach空间中的角色一样重要,单调性质在最佳控制逼近和遍历原理当中都扮演着十分重要......
本文主要研究了向量级数的乘数收敛及其不变性,关于乘数收敛的最强Orlicz-Pettis型拓扑,算子级数c(X)-赋值收敛的最强意义以及算子级......
利用连续集值赋值映射和弱拓扑讨论了集值映射空间的继承稠密度和继承Lindel(o)f度,获得了点态收敛拓扑空间Cp (X)上hd(Cp(X) 和hl......
基于对证明方法的分析,利用度量化技巧与Whitley构造技术,给出Eber-lein-Smulian定理的一个细致简单的证明.此证明不借助完备性,因......
使用连续小波变换讨论了某些偏微分方程和相应的积分方程之间的关系.使用连续小波变换能够将这些偏微分方程变换成相应的积分方程,......

