射影簇相关论文
内容摘要:高维代数簇的双有理等价分类是代数几何研究的一个重要分支,其主要问题就是通过代数簇的收缩态射构造极小模型。设X是n维光......
本文主要研究当X是光滑的奇维数射影簇时,小收缩映射f∶X→Y的翻转f+∶X+→Y的存在性。本文的主要结果是:设X是7维光滑射影簇,f∶X→Y......
本文主要是通过代数簇X的丰富向量丛E的数字性质来刻画超二次曲面以及丰富向量丛E的结构。主要结果是:设X是光滑的n维射影簇,E是X上......
设X是n维非奇异射影簇,L是X上的丰富线丛,K_X是X的典范丛, f:X→Y是极面收缩态射,其支撑除子为K_X+(n-4)L.如果X与Y不是双有理等价......
设X是n维非奇异射影簇, L是X上的丰富线丛,KX是X的典范丛, f:X→Y是以KX+mL为支撑除子的双有理收缩态射(m≧1), F是f的任一纤维.文中......
X是2k-1维光滑射影簇,f_R:X→Y是小收缩映射,如果例外集E的维数为k,那么在特定的条件下E是若干个k维射影空间的并。......
X是光滑的2k-1维射影簇(k≥3),fR:X→Y是小收缩映射.如果fR的例外集E的不可约分支Ei都是光滑的k维子簇,那么每个Ei必定是以下三者之......

